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Introduction

Machine learning needs small floating-point number formats to increase
the speed of computations while decreasing the memory size and the
energy consumption. Constructors, such as ARM, Intel and NVidia [1],
began developing 8-bit formats for floating-point numbers. As other
constructors, such as GraphCore, developed other formats, the need
for standardizing this format arose.

The IEEE 3109 working group for the standardization of floating-
point numbers for machine learning has been created in 2022. In what
follows, we will sum up the current state of the work [2].

Current status

Format

8-bit floating-point numbers are built using the same pattern as 32-bit
or 64-bit ones, with some exceptions that will be detailed during the
talk. The format of a floating-point number is chosen to occupy 8 bits:
one bit for the sign, p bits for the significand, including the hidden bit,
the remaining bits are used to store the exponent.
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Rounding modes

Mandatory rounding modes are still being discussed.

Operations

The set of operations is not yet fully specified. The behavior of oper-
ations when an overflow can be either to saturate, that is, to return
the largest (in absolute value) representable number, or to return an
infinite value.

Conclusion and perspectives

This is an ongoing work and all of the final specifications of the fu-
ture standard are not yet chosen. Remaining questions about this fu-
ture standard are numerous. Will it be usable for interval arithmetic?
Namely, will be directed rounding modes available? Is the machine
learning community interested in interval arithmetic, for instance to
guarantee some results? Will it be used by applications outside ma-
chine learning? If it is used by applications such as robotics or control
theory, how will it impact computations and results?
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Introduction

Interval methods have been widely used in control engineering, notably
for verification of safety-critical systems or handling non-stochestic un-
certainties. However, many other domains could benefit from interval
methods and other rigorous numerical techniques to provide reliable
computational analyses, especially when questions of legal compliance
are involved. In particular, given the opaque behaviour of many artifi-
cial intelligence (AI) systems based on machine-learning (ML), legisla-
tion is increasingly demanding more insight into such systems, notably
regarding the explainablity of recommendations made.

In this talk, I will give an overview of some problems in AI and the
legal domain, and approaches involving interval analysis for their solu-
tion, including a project for the Dutch Tax Service in model-checking
well-definedness of their computations.

Querying Grey-Box Models

Many AI sytems make a prediction or recommendation of an output
variable y based on input variables x. Such a system is a black-box
model: one can merely see the output returned for a given input. This
makes gaining insight into the internal workings very difficult. Using
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polymorphism, we can implement an AI system to accept any applica-
tive functor [6]; We call such a system a grey-box model [3]. Since
applicative functors include intervals, differentials and expressions, we
can make extended queries of grey-box models. Applying the system
to intervals (or more general sets) can allow us to prove properties of
the form “for all inputs x ∈ [x], the output f(x) lies in [y]”.

Verifying Neural Networks

Neural networks are a cornerstone model in modern artificial intelli-
gence. Networks with a ReLU activation function σ(x) = max(0, x)
are piecewise-affine functions, and can be verified by the ReLUplex
algorithm [5], which is a branch-and-bound approach built on top of
the simplex algorithm, Smooth activation functions can be accurately
handled using Taylor polynomial models [4]. We have compared these
approaches in [7] using these techniques.

Correctness legal algorithms

Software for implementing algorithms described in legislation has high
standards of correctness, including that of numerical computations.
In [2], in which the authors consider European regulations for drivers’
rest-periods, and the use of tachographs. This work illustrates subtle
logical and numerical artificts in the interpretation of these laws.

Model-checking tax rules

RgelSpraak [1] is a controlled natural language (CNL) for defining the
rules by which tax is computed. It is used in the Agile Law Execution
Factory (ALEF) which automatically generates software computing
the tax due. However, these rules might not be well-defined in all cir-
cumstances, for example, in a rule involving division, the divisor should
never be allowed to be zero, The Dutch Tax Office (Belastingdienst) is
interested in statically “model checking” the rules to find and prevent
such ill-formed conditions. Mathematically, this problem reduces to
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computing the ranges of functions, possibly over unbounded domains,
and showing that a partial function such as ÷ or

√
can never be given

an argument outside its domain. Mathematically, this reduces to is a
constraint satisfaction problem, possibly over an unbounded domain,
which can be rigorously solved by interval mathods.
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Introduction

Many real-life systems are characterized by delay phenomena [3, 4,
8]. Among others, these are caused by physical transport processes
over long spatial domains or by communication via networks including
the associated processing times. When modeling such systems in a
continuous-time form, either delay-differential equations or fractional-
order differential equations are employed. These system models are
characterized by the fact that not only the initial condition at a specific
time instant and the corresponding external input signals after that
point need to be known to make predictions about the future behavior
but also knowledge about the temporal evolution of the system state
for the (entire) past is required [6, 7].

A discretization in time leads to sets of difference equations which
again include not only the mapping of state vectors x(t) from one time
instant t = tk to a subsequent point tk+1 but which also dependent on
the predecesssor states x(tk−1),x(tk−2),x(tk−3), . . ..
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Identification of Past (Pseudo) State Evolutions

To distinugish the memory phenomenon mentioned before from the
notation of the system state in classical ordinary differential equations,
x(t) is subsequently denoted as a pseudo state if it refers to system
models with delay. In this contribution, the approach of identifying
initial conditions with an observability matrix-based procedure [5] is
transferred to the identification of the pseudo state initialization.

For that purpose, consider first a linear discrete-time difference
equation

x(tk+1) = A · x(tk) +B · u(tk) , x(tk) ∈ Rn (1)

with the measured output y(tk) = cT · x(tk) ∈ R.
The evaluation of the so-called observability mapping [1, 9] yields

q =




y(t0)
y(t1)
...

y(tn−1)


 =




cT

cTA
...

cTAn−1


 · x(t0)

+




0
cTB · u(t0)

...
cT ·

(
B · u(tn−2) +AB · u(tn−3) + . . .An−2B · u(t0)

)




= QO · x(t0) +∆ ,

(2)

where QO is the observability matrix. In the case that the system
is fully observable, coinciding with a full rank of QO, the initial state
x(t0) can be uniquely reconstructed by an analytic solution of (2) under
the assumption of perfectly known system matrices and control inputs
A, B, cT , u(t0), . . . .

In recent work, cf. [5], this idea has been generalized to a set-based
estimation approach that also allows for handling bounded uncertainty
in the measured outputs as well as in the system parameters.

During this presentation, we aim at further generalizing this ap-
proach towards a set-based contraction procedure that allows for tight-
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ening a-priori bounds on the initialization function, given in the form
of the intervals [x](tk) with k ∈ {. . . ,−3,−2,−1, 0}.

Illustrating Example

Consider the discrete-time difference equation x(tk+1) = 0.9x(tk) +
0.1x(tk−1) with the direct state measurement y(tk) = x(tk) + υk and
the bounded measurement uncertainty υk ∈ [υk] = [υk ; υk]. Denote
the corresponding measurement intervals by [y](tk) for which x(tk) ∈
[y](tk) holds with 0 ∈ [υk].

Using this information, an interval-based contractor [2] can be im-
plemented that accounts for the following model:

x(t1) = 0.9x(t0) + 0.1x(t−1) ∈ [y](t1),

x(t2) = 0.9x(t1) + 0.1x(t0) ∈ [y](t2), . . . ,

x(t5) = 0.9x(t4) + 0.1x(t3) ∈ [y](t5) .

(3)

Figure 1: Identification of the depen-
dency between x(t−1) and x(t0), represented
as a constrained zonotope with [υk] =
[−0.05 ; 0.05].

The solution approach now
firstly starts with the most re-
cent measurement [y](t5) and
tries to exploit this information
to enhance the a-priori enclo-
sures for x(t1) ∈ [y](t1) and
x(t2) ∈ [y](t2). This informa-
tion is then temporally propa-
gated backward to obtain fea-
sible bounds for [x](t−1) and
[x](t0), see Fig. 1. For sys-
tem models with an infinite
memory of previous states, the
solution approach is combined
with the finite-memory tech-
nique presented in [7], which is
essentially based on a change of coordinates to circumvent the necessity
to account for infinitely many previous time instants.
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Introduction

Reliable state estimation is essential for practical control applications,
because oftentimes not all state variables can be measured. It is there-
fore necessary to estimate the corresponding state variables based on
available measurements, for example with the help of state observers.
During the observer design and parameterization, uncertainties have
to be taken into account when dealing with real systems, because they
are always affected by uncertainties which include for instance mea-
surement noise, process noise or parametric uncertainty. A common
approach for state estimation in systems with bounded uncertainty is
the use of interval observers, which provide lower and upper bounds,
that always enclose the true trajectories. Among other techniques,
interval observers are recurrently designed based on the monotone sys-
tem theory [1]. A consequence of that is, that the design conditions
are augmented by the condition of cooperativity, which can complicate
finding appropriate observer gains. There are numerous techniques to
address this problem. One possible method for relaxing the design
conditions is to use a TNL observer structure [2]. Besides the observer
gain L, this observer structure provides two additional degrees of free-
dom with the matrices T and N. However, it is still challenging to
find suitable observer gains for real systems, especially when the state
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variables to be estimated are scaled differently or the dynamics are
described by stiff system models. In this presentation, we will discuss
several techniques that can be used to systematically parameterize the
observer gains of a TNL observer for uncertain systems with differently
scaled state variables.

TNL Observer

Consider an uncertain time-invariant system according to

xk+1 = Ad · xk +Bd · uk + Ed ·wk

yk = C · xk + vk ,
(1)

with xk ∈ Rn, yk ∈ Rm, uk ∈ Rp, wk ∈ Rq, vk ∈ Rm. The matrices
Ad, Bd, C, and Ed are constant and of appropriate dimensions. We
assume that the process and measurement uncertainties are unknown
but bounded, so that wk ≤ wk ≤ wk and vk ≤ vk ≤ vk. As proposed
by Z. Wang et al. in [2], a TNL observer can be designed for system
(1) corresponding to

ζk+1 = TAdx̂k +TBduk + L(yk −Cx̂k) +∆k ,

x̂k = ζk +Nyk ,
(2)

with the observer gains T, N, L and ζ
k+1

≤ ζk+1 ≤ ζk+1, x̂k ≤
x̂k ≤ x̂k, ζk+1 = ζk+1(x̂k(ζk),∆k), ζ

k+1
= ζ

k+1
(x̂k(ζk),∆k), ∆k =

∆k(TEdwk,Lvk,Nvk+1) and ∆k ≤ ∆k ≤ ∆k. With the error de-
fined as ek = x̂k − xk and ek = x̂k − xk, B̃d =

[
In L N

]
, dk =[

(∆k −TEdwk) vk vk+1

]T
, dk = dk(∆k), dk = dk(∆k), and a given

scalar γ > 0, the error dynamics of this state observer can be written
as [2]

ek+1 = (TAd − LC)ek + B̃ddk , (3)

with ek+1 = ek+1(ek,dk), ek+1 = ek+1(ek,dk) and the virtual output
equation

ze,k = Ceek +Dedk . (4)



Maastricht University SWIM 2024 3

Given that the initial condition is chosen so that x̂0 ≤ x0 ≤ x̂0, the true
value is reliably bounded with lower and upper bounds x̂k ≤ xk ≤ x̂k

if the matrix M = (TAd − LC) is Schur stable and elementwise non-
negative. Additionally, the error dynamics satisfy the H∞ criterion
∥ ek ∥ < γ ∥ dk ∥ and ∥ ek ∥ < γ ∥ dk ∥ if there exists an arbitrary pos-
itive definite diagonal matrix P, so that the following matrix inequality
is fulfilled [2]

[
MTPM+CT

e Ce −P MTPBd +CT
e De

BT
dPM+DT

e Ce BT
dPBd +DT

e De − γ2I

]
≺ 0 . (5)

Systematic Observer Parameterization

Besides the observer gains T, N, and L, there are two additional design
degrees of freedom that can be used during the observer parameteriza-
tion, namely the matrices Ce and De that determine how the virtual
output is affected by the individual error terms and the process and
measurement noise. In the literature, it is common to choose the ma-
trix Ce to be the identity matrix or a uniformly scaled matrix [3, 4, 5].
To directly impose different convergence rates of individual state vari-
ables, we choose a diagonal matrix structure which can have different
diagonal elements [6]. Additionally, we propose different techniques to
enforce interpretable structures in the matrices T, N, and L, that can
lead to improved estimation results with regard to interval width. Al-
though this approach does not provide an optimal solution in the sense
of the H∞ criterion, it might be beneficial when dealing with uncertain
systems with parametric uncertainty [7]. To specify particular matrix
structures, we use additional design conditions and cost functions in
the LMI solution. Those can be for example based on eigenvalues of
the observer system matrix or on a specified ratio between the matrices
L and N. Additionally, a Luenberger observer like structure can be
imposed for a simplified observer parameterization.
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Introduction

Because of the constraints inherent to their environment, underwater
robots carry out most of their missions autonomously. For critical
applications, such as mine warfare, it is essential to be able to guarantee
the success of a mission or, at least, to estimate its probability of
success.

Missions are often achieved by validating a set event, such as the
coverage of a specific area by a sensor, or the respect of a navigation
corridor. However, sensor modeling and navigation algorithms are
generally based on probabilistic assumptions, such as Gaussian noise
and Kalman filtering. So, to estimate the success probability of such
mission, it is necessary to find a method that conciliates the ensemblist
approach with the probabilistic one, without confusing the two.
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Formalism

Given a random trajectory x(·) : R 7→ Rn, with a known probability
density function πx, and a random vector p ∈ Rm, with an unknown
probability density function πp but a known support [p] ∈ IRm.

We consider an event E, defined with a function h : Rn × Rm → R,
such as:

E : ∀p ∈ [p],∃t ∈ R, h(x(t),p) ≤ 0. (1)

By defining the boolean variable y, such as y = 1 if E is verified and
y = 0 otherwise, we have:

PE = P (y = 1) ∈
∫

x(·)∈X
[η](x(·)) · πx(x(·)) · dx(·) (2)

where:

[η](x(·)) =





[1] if ∀p ∈ [p],∃t ∈ R, h(x(t),p) ≤ 0
[0] if ∀p ∈ [p],∀t ∈ R, h(x(t),p) > 0
[0, 1] otherwise

(3)

As a result, we will obtain an interval [PE], containing the probability
PE of the event E.

To estimate this interval of probability, we propose to use a Monte-
Carlo method, generating N ∈ N∗ samples of the trajectory x(·) and
verifying for each one the value of [ηi] with i ∈ [1, N ] and where:

[ηi] = [η](xi(·)) where xi(·) is the i-th draw of x(·)
It is thus possible to obtain an estimate of [PE], by calculating the
average of the [ηi]:

[PE] ≈
1

N

N∑

i=1

[ηi] (4)

The law of large numbers leads us to believe that this estimate will be
all the more accurate as N → ∞.
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Simulation

In this scenario, we consider a mobile robot described by a state
equation ẋ = f(x,u) and initialized to a given state x0. It aims to
follow a reference trajectory in the plane (represented by a black line
in the Figure 1).

To do so, the robot evolves in dead-reackoning, with only a compass to
estimate its heading (with a white Gaussian noise). Using a controller
and a Kalman filter, it can generate a command ud from the estimate
of its state x̂. The robot’s trajectory x(·) is therefore random, and
N ∈ N∗ draws from this trajectory can be obtained by simulating the
system N times.

We now introduce into the scenario three beacons whose positions are
uncertain. The position pj ∈ R2 of the j-th beacon is in the set
[pj] ∈ IR2. To detect the beacon, the robot must be close enough to
it, i.e. at a distance less than or equal to the robot’s detection radius
rb. We can thus define a function h : R2 × R2 7→ R to quantify this
statement:

h(x,p) = ∥x− p∥ − rb (5)

The event Ej describes the case where the robot has seen the j-th
beacon, and can be formalised by the following condition:

Ej : ∀pj ∈ [pj],∃t ∈ R, h(x(t),pj) ≤ 0 (6)

For a given, and previously calculated, trajectory xi(·), with i ∈ [1, N ],
it is therefore possible to estimate the probability of the event Ej by
introducing the function [ηj]:

[ηj](xi(·)) =





[1] if ∀pj ∈ [pj],∃t ∈ R, h(xi(t),pj) ≤ 0
[0] if ∀pj ∈ [pj],∀t ∈ R, h(xi(t),pj) > 0
[0, 1] otherwise

(7)
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Figure 1: Simulation of the scenario

By calculating the value of [ηj] for each trajectory xi(·) and then
averaging, it is now possible to obtain an estimate of [PEj

].

In this scenario, it is even possible to go one step further and estimate
the probability that the robot will detect all 3 beacons during a single
trajectory xi(·). This mission is described by the event E, with E =
E1∧E2∧E3, and the function [ηj] is replaced by the function [η] where:

[η](xi(·)) = [η1](xi(·)) ∧ [η2](xi(·)) ∧ [η3](xi(·)) (8)

where ∧ should be interpreted using the three valued logic.
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Introduction

Estimation and association are usually dealt with probalistic meth-
ods. However, these methods often require strong hypothesis on the
distribution of uncertainties which are usually needed to be Gaussian.
When such hypothesis can no longer be verified, validated numerical
integration methods can provide useful informations on the considered
uncertainties. Validated numerical integration methods, also named
reachability analysis or guaranteed simulation, are interval counter-
parts of numerical integration methods [1] [2]. Further, by using inter-
vals instead of probabilities, the notion of distribution density is lost.
With confidence contractors, it becomes possible to create potential
clouds, which are the validated counterparts of confidence intervals
[3].
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Basic properties

Definition 1 (Confidence contractor).

Cbc([x]|fX , cc) : IR → IR
[x] 7→ [x] ∩ [y]

with [y] defined such that Pr(x ∈ [y]) =
∫
[y] fX(x) dx = cc ([y] is the

confidence interval), Pr(x ∈ [y]) stands for ”probability that x is in
[y]”, with x following the distribution fX, and cc being the confidence
coefficient (0 ≤ cc ≤ 1).

Main results

We apply our technique to satellite detection, association and track-
ing with promising results in simulation. A model of satellites in an
Equinoctial frame is simulated from an initial observation. After a
potentially long period, new measures are acquired and association to
the simulated satellite is verified to decide if it is the same or a new
object. If associated, the measures are used to improve the quality of
the satellite estimation. Our approach provides, then, a rich solution
(with guarantees and probabilities simultaneously) to the important
problem of association and estimation in space object tracking.

To test our method, three scenarios were studied. The first sce-
nario consists in the propagation of the 5 % and 95 % potential clouds
of a satellite for 6 hours. Figure 1 shows the results on the equinoc-
tial parameters p and L. For an easier comparison between the two
potential clouds, the intervals are translated using the center of the
95 % interval. In the second scenario, the uncertainties of a satellite
given its initial state were propagated for 12 hours, then a series of
measures on its position were added to the simulation to improve the
estimation. Figure 2 provides the evolution of the uncertainties of the
six state parameters, with and without the added measures after 12
hours. In the last scenario, the 5 % and 95 % potential clouds are
propagated using validated simulation for the two satellites. At last,
the trajectories of the two satellites can be compared on Figure 3.
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Figure 1: Propagation of the 5 % (blue) and 95 % (red) potential
clouds on the p and L parameters with a simulated time of 6 hours.

Figure 2: Propagation of the uncertainties of the state of a satellite for
15 hours, with addition of 10 measures (blue) and without the addition
of measures (black) after 12 hours (red).
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(a) Intersection of position boxes (x, y
and z in the ECI frame) for the prop-
agation of the 95 % potential cloud of
two satellites.

(b) No intersection of position boxes
(x, y and z in the ECI frame) for the
propagation of the 5 % potential cloud
of two satellites at the same time.

Figure 3: Comparison of position boxes of a same satellite for the
propagation of the 5 % and 95 % potential clouds.
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Introduction

Reachability Analysis is an important tool in robotics when it comes
to ensure that a robot performs its mission safely. Performing a Reach-
ability Analysis comes down to calculating the image of a disk D by
a function f . In this work we will assume that for all x in D we have
det(Jf(x)) > 0 where det is the determinant function and Jf the Jaco-
bian matrix of f . This means that if we choose an orientation for the
contour ∂D of D, it is conserved by the function f .

Figure 1: Reachability Analysis
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Different methods [1] [2] allow us to estimate the reachable set
of a robot at a given time. We will focus on the method presented
in [3] which provides the contour of the Reachable set and its normal.
We will see how we can efficiently apply it with Interval Analysis tools.

More specificly we will introduce the notion of ”Box Chain” and
see how it can be used to detect fake boundaries in two dimensions and
greater. If we adopt the notations in fig 1 , eliminating fake boundaries
comes down to finding ∂f(D) from f(∂D).

Main results

We propose a definition of the Box Chain and use it to partition a
contour in two dimensions. This partioning allows us to detect inter-
sections in the contour, meaning that there are fake boundaries in it.

The main contribution of this work is to show how we can use these
Box Chains to detect fake boundaries. This method uses the fact that
we know the normal to the contour to first color the inside of the
Reachable set, and then suppress the fake boundaries.

We will finally see how this method can be extended in higher
dimensions.
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Figure 2: Box Chain decomposition of a 2D and a 3D contour

Figure 3: Inside of the Reachable set colored in green
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Figure 4: Eliminating fake boundaries

Acknowledgement

Thanks to the Brittany region and the AID.

References

[1] J. Damers, L. Jaulin and S. Rohou. Lie symmetries applied to
interval integration. Automatica 2022.

[2] L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schuppen. Reach-
ability and Control Synthesis for Piecewise-Affine Hybrid Systems
on Simplices. IEEE Transactions on Automatic Control, 2006.

[3] T. Lew, R. Bonalli and M. Pavone. Exact Characterization of the
Convex Hulls of Reachable Sets. 62nd IEEE Conference on Decision
and Control (CDC 2023), Dec 2023.



Outer approximation of the occupancy set
left by a mobile robot

Luc Jaulin

Lab-STICC, ENSTA-Bretagne

2, rue F. Verny, Brest
lucjaulin@@gmail.com

Keywords: Occupancy set, Mobile robotics, Interval Methods

Introduction

We consider a multi-body mobile robot described by a state equation
ẋ = f(x,u), where the input u ∈ [u] is uncertain. The robot has a
given shape. For a given trajectory x(t), we define the occupancy set
X as the set of all points a of a world that has been occupied by the
robot at least once during the mission. It is defined by

X =
{
a ∈ R2 | ∃t ∈ [0, . . . , tmax],∃i s.t. hi(x(t), a) ≤ 0

}

where hi is the shape function of the ith body.

Main results

We propose a new interval-based method to enclose X. This is illus-
trated by the figure for a car-trailer. Here, the robot has two bodies
(red and orange) with two inputs u1 (rotation rate) and u2 (the accel-
eration).

1



It is described by the following state equation




ẋ1
ẋ2
ẋ3
ẋ4
ẋ5




=




x5 cosx3
x5 sinx3

u1 + x5 sin(x3 − x4)
x5 sin(x3 − x4)

u2




where x1, x2 are the coordinates of the center, x3 is the heading of the
first body, x4 is the internal angle and x5 is the speed.

The main contribution of this work is to show how to find a diffeo-
morphism on the state space to rewrite the system into a causal chain.
The interval integration of the causal chain can then easily be done
even in case of uncertainty in u. In a second step, we show how to
characterize X using an interval-based projection algorithm.

2
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Introduction

The transition from global to local planning often represents a signif-
icant gap in outdoor navigation. The local path planner must allow
for any unforeseen environmental constraints, such as new obstacles
detected in the vicinity of the robot. The solution suggested here, to
fill this gap, consists in generating a path optimized over a Receding
Horizon (RH), based on waypoints generated by the global planner,
using an Interval Branch and Bound (B&B) algorithm. This path is
then followed by using a Model-based Predictive Controller (MPC) [1].

Related Work and Motivation

Michael Defoort [2] and then José Mendes Filho [3] contributed to
the generation of an optimized trajectory over a RH. They chose to
use B-splines as the solution support due to their properties: a local
modification; a definition of the entire curve only with several control
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points (CPs); a setting of the degree of continuity of the curve, and
therefore the smoothness of the path generated. Defoort formalized
the problem as a nonlinear constrained problem. Non-interval solvers
like Sequential Least Squares Quadratic Programming (SLSQP) [4]
were used to find a solution. Two main issues were raised: the inabil-
ity to guarantee a solution if one exists; and the inability to control
computation time and therefore to ensure real-time (RT) performance.
Interval methods applied to constrained global optimization make it
possible to “find the global optimum and provide bound on its value
and location” (Hansen [5]). Moreover, interval B&B algorithms can
prematurely stop the optimization and provide a sub-optimal solution
which respects constraints and therefore ensure RT performance.

Contribution

A formalization of the problem making it compatible with interval
methods and a custom interval B&B algorithm are presented. The
main idea is to optimize CPs, represented by interval vectors (2D
boxes, one dimension per coordinate of CPs), of a B-spline in order
to avoid obstacles (constraints) while minimizing a cost function (op-
timization). The optimal path over a RH is obtained with a succession
of bisections and contractions. This step is then repeated after horizon
displacement by retaining some of the optimized CPs of the previous
B-spline to ensure continuous curvature at the connection and to re-
spect the principle of generation over a RH.

First Result and Proof of Concept

Figure 1 shows the first result using a basic formalization of the prob-
lem and a default configuration of IbexOpt [6]. Circular obstacles are
used to simplify the description of the environment. In further work
they will be replaced by a paving of a binary cost map (obstacles/free
space). A weighted cost map will be used to ensure the optimization.
Moreover, uncertainties corresponding to control error margin or per-
ception quality are taken into account by adding an error term [−τ, τ ]
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on constraints to guarantee that the path obtained is safe. For e.g.
with τ = 0.2m, an obstacle-free zone of 20 cm on each side of the path
is guaranteed (see Figure 1.b).

Figure 1: (a) Detailed view of all paths generated over successive RH.
Each color corresponds to a B-spline arc. (b) View of two locally
optimized reference paths, with two different τ , corresponding to the
kept part of each of the paths generated over successive RH.

Acknowledgement

This work was carried out in the scope of MOBILEX project. This
project received funding from the French National Research Agency
(ANR) and the French Defense Innovation Agency (AID), in partner-
ship with the French National Center for Space Studies (CNES) and
the French Agency for Transport Innovation (AIT).



Maastricht University SWIM 2024 4

References

[1] Eric Lucet, Alain Micaelli, and François-Xavier Russotto. Accurate
autonomous navigation strategy dedicated to the storage of buses
in a bus center. Robotics and Autonomous Systems, 136:103706,
2021.

[2] Michael Defoort, Jorge Palos, Annemarie Kokosy, Thierry Floquet,
and Wilfrid Perruquetti. Performance–based reactive navigation for
nonholonomic mobile robots. Robotica, 27, 03 2009.
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Introduction

Designers and users of cyber-physical systems often require guarantees
on the system’s behavior, hence the need of a runtime verification
process. This formal verification can be done using temporal logic,
a formalism able to specify the system’s requirements with temporal
constraints. In 1977, Linear Temporal Logic (LTL) [9] is introduced,
allowing to describe discrete time properties on a discrete signal. This
is mainly used for formal verification of software or digital hardware,
but reaches its limits when considering real-time constraints. When
considering CPS, which are hybrid systems, man needs an extension
of LTL able to handle real-time properties on real-value signal. This
is the purpose of Signal Temporal Logic (STL) [8]. We consider an
approach using interval analysis to ensure computation guarantees and
take into account uncertainties in a robust manner.

STL is defined recursively by:

ϕ := µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[a,b]ϕ2 | ⊤ (1)
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with ϕ an STL formula, and U the until operator. The interval [a, b]
is defined with a, b ∈ R+. We have

(x, t) ⊨ ϕ1 U[a,b]ϕ2 ⇐⇒
∃t′ ∈ [a, b] (x, t+ t′) ⊨ ϕ2 and ∀t′′ ∈ [t, t′] (x, t′′) ⊨ ϕ1. (2)

µ is an atomic predicate: µx ≡ f(x1(t), . . . , xn(t)) > 0.
Several operators can be derived from STL, such as the well known

finally operator F[a,b]ϕ ≡ ⊤ U[a,b]ϕ, noted ♢, which is sometimes called
eventually. The satisfaction of ϕ by a signal x = (x1, . . . , xn) ∈ Rn is
written (x, t) ⊨ µ and is true if and only if we have f(x1(t), . . . , xn(t)) >
0.

Monitoring using intervals

Related works

The qualitative satisfaction of an STL formula is a boolean value. This
binary result can not contain an information of robustness of satisfac-
tion. Quantitative satisfaction [5] introduces this notion of robustness
to provide a measure of how much a trace satisfy or violate a given
property. This approach can be used to handle some uncertainties, as
in [4] where spatial and temporal uncertainties are considered, some-
times by the help of intervals. For instance, in [11], an offline monitor-
ing algorithm with intervals for finite time STL formulas is proposed.
In [3], an online monitoring is proposed using an interval of all the
possible quantitative satisfaction of a partial signal with unbounded
future.

In the literature, most of the researchers proposing STL monitors
deal with single traces. However, in our approach, we want to go
further by providing a robustness to numerical and model approxima-
tions. We then consider set of traces that can be represented by tubes
(interval of trajectories).
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Tubes

Interval STL is introduced in [1] to take uncertainties in predicates.
Signals of intervals are considered, and quantitative satisfaction is re-
turned as an interval. Then, depending on the inclusion or not of the
zero value in this interval, the resulting satisfaction is a three-valued
logical value: true, false, or undef. In [10], the authors cut the tubes in
the time dimension and interpret STL formulas as successive discrete
states in a new formalism called Reachset Temporal Logic. When there
exists a trace in the set of trace that does not satisfy the constraint,
then the proposed monitor returns false. The approach proposed in
[6] is closer to [8]: it searches times when properties become true or
false, and then propagates the information in a bottom up manner to
deduce the result for the whole STL formula. In the latter, there is no
completeness: the algorithm can return “unknown” when there is an
ambiguity on the satisfaction or the violation of every trace.

Boolean interval extension

In our work, we propose to extend these previous results to boolean
interval, such that the ambiguous “unknown” result is represented by
the interval [0, 1], and the ambiguity may be eliminated later if enough
information are provided. Indeed, in the following example, both ap-
proaches from [10] and [6] lead to an unknown or false result, despite
the signal does satisfy the formula.

Consider the tube [x](t) represented in the Figure 1. We have a
set point ρ ∈ R we want our system to reach in the time interval
[a, b] ⊂ R+ (and not before). The corresponding STL formula Φ is:

Φ ≡ ¬ϕ U[a,b]ϕ

with ϕ ≡ [x] ≥ ρ.
In this example, during the period [a, b], the satisfaction of the

predicate ϕ is ambiguous. However, the STL formula Φ is well satis-
fied by any trace taken in the tube [x](t). In order to conclude the
satisfaction rather than an unknown or false result, we propose to use
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Figure 1: The tube is represented in blue. Before a and after b, there
is no doubt on satisfaction or violation of the predicate ϕ ≡ x ≥ ρ.
However, during the period [a, b], some traces may satisfy ϕ while other
not.

reachability analysis to obtain the result. The difficulty lies in the fact
that the time t′ from equation (2) may be different for every possible
trace included in the tube, so there is an infinite number of trace and
time to check.

The proposed solution is to use a branching algorithm on the time
interval [a, b], such that we can conclude the satisfaction of the formula
when the set [x](0) is completely covered by the union of the inner
backward reachsets starting from the set Xϕ of states satisfying ϕ and
from times [t′] ⊂ [a, b] (see e.g. [7]).
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Introduction

A Lie group (G, ·) is a manifold G with an differentiable internal op-
erator · defining a group structure. Lie groups are used in robotics [3]
as convenient ways to represent simutaneously states (as a continuous
manifold) and transformations on states (with the operator).

To each Lie group G is assocatied a Lie algebra g which repre-
sents the vector space tangent to G at the neutral element Id and, by
extension, at any element g of G.

Hence a differential equation on a Lie group G is expressed as:

Ṙ = f(R, t) R(t0) = R0 (1)

where f : G × R → g. As an element of g, f(R, t) represents the
evolution of R in the local tangent space of G near R.

Our goal is to compute an guaranteed approximation of R, when
G is a matrix Lie group, given uncertainties on the values of f . We
specifically consider here the case where f depends only on t.

Contribution

G is a matrix Lie group when its elements can be represented as in-
vertible matrices. In this case, the solution of the differential equation
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(a) (b) (c)

Figure 1: Results of differential equation in the Lie Group SE(2) (rep-
resenting the pose of a 2D car). The car has a constant rotation speed
to the left and a variable speed forward. (a) Trajectories and final
states for constant Ṙ (i.e. e[v]). (b) Trajectories and final states for
variable Ṙ (i.e. Exp([v])). (c) Approximations of Exp([v]) with boxes,
using the Taylor sum (light purple) and scaling-and-squaring (dark
purple).

Ṙ = f(t) is expressed as a right product integral for matrix func-
tions [2]:

R(t) = R(0) · (Id + f(τ)dτ)
t∏

0

(2)

When f = v is constant, the exact result is:

R(t) = R(0) · etv (3)

When f varies inside a box [v], we consider a new operator Exp
defined as:

Exp([v]) = { (Id + f(τ)dτ)
1∏

0

| f : [0, 1] → v} (4)

Figure 1 (a) and (b) illustrates the difference between e[v] and
Exp([v]) with an example from the Lie Group SE(2).

We use the following properties to approximate Exp([v]):
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1. Exp([v]) can be approximated with an unoptimised Taylor sum:

Exp([v]) ⊆ Id +
[v]

1!
+

[v][v]

2!
+

[v][v][v]

6!
+ . . . (5)

2. Scaling-and-squaring [1] can be used to refine the approximation
of Exp([v]):

Exp(2[v]) = Exp([v]) · Exp([v]) (6)

These results enable to compute a guaranteed and relatively accu-
rate approximation of Exp([v]) (Fig.1 (c) gives an example).
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Abstract

An essential aspect of software for exact real arithmetic (ERA) is the
way how it deals with the composition of functions. The resulting error
propagation depends on the way intermediate results are evaluated,
which could be, for example, with naive interval arithmetic or with
more elaborate applications of intervals like in Taylor models [MB01].

In this short note we want to discuss aspects of this error propaga-
tion in a quite special application of ERA: the computation of relatively
long trajectories in iterated function systems. As a prominent example
for such systems we will concentrate on the logistic map

L(x) = µ · x · (1− x)

with different control parameters µ ∈ [2, 4] [CE80] which has been dis-
cussed in many papers in the field of ERA, like [Bla05, Spa10, Spa14].

Although Taylor models have an improved error propagation com-
pared to naive interval arithmetic, we present cases where implementa-
tions based on the approximation methods must have the same asymp-
totic computational complexity, so the gain from using Taylor models

1Joint work with F. Brauße <franz.brausse@manchester.ac.uk> and M. Korovina <rita.korovina@gmail.com>.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme

under the Marie Sk lodowska-Curie grant agreement No 731143. The research leading to these results has received
funding from the DFG grant WERA MU 1801/5-1.
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is reduced to just a factor. This is essentially due to the following
property of the computational complexity M(n) of multiplication of
n-bit integers:

M(c · n) ∈ O(M(n))

This property implies that even significant differences in the error prop-
agation are asymptotically almost irrelevant. In consequence, for both
approaches repelling fixpoints of the logistic map lead to a complex-
ity of O(n · M(k + n)) for the computation of n iterates with a final
precision of k bits.

On the other hand, linear Taylor models exhibit an asymptotically
better behavior for stable fixpoints: Here the complexity is reduced to
O(n ·M(k)), while naive intervals still remain at O(n ·M(k + n)).
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Introduction

With interval arithmetic, solution sets to given problems can be de-
scribed by operators called contractors and separators. First, we recall
what they are.

Set descriptors: from contractors to separators

Let us say that our solution set is X. There exist interval operators to
describe it [1]. CX denotes the contractor that describes the set X. IR
denotes the intervals of R. One can apply the contractor on the box
[x] ∈ IRn and get CX([x]), as illustrated by Figure 1a. CX verifies two
properties:

CX([x]) ⊂ [x] (contractance) and CX([x]) ∩ X = [x] ∩ X (correctness).

One can guarantee that [x] \ CX([x]) ̸⊂ X. It is then possible to
construct a paving made of blue boxes that do not contain points from
X and yellow boxes that may contain points from X (see Figure 2a).
The latter form an exterior approximation denoted by X+.

Separators simultaneously provide inner and outer approximations
of the set X, as illustrated by Figure 1b. Thus, one can also identify
green boxes that are contained in X (see Figure 2b). They form an
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X
CX([x])

[x]

(a) Contractor

X

[x]
X

[x]

SX([x])

(b) Separator

Figure 1: Contractor CX and separator SX applied on the box [x].

interior approximation denoted by X−. Green and yellow boxes form
X+. We then have an enclosure: X− ⊂ X ⊂ X+.

Set projection separators

In some applications, one may only be interested in the projection of
the solution set [2]. We have a separator for that operation: SepProj
in the Codac library [3].

Reinforced projection separators

Let us look at the projection along the z-axis of the set X defined by

2x2 + 2.2xy + xz + y2 + z2 ≤ 10. (1)

By defining f(x, y, z) = 2x2 + 2.2xy + xz + y2 + z2 − 10, it can be
written as

f(x, y, z) ≤ 0. (2)

The current implementation of the separator of the projection requires
fine-tuning. Without the proper parameters, it produces bad quality
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(a) Contractor → X+ (b) Separator → X−,X+

Figure 2: Pavings of the set X = {x, y ∈ R2 | 2x2 + xy + y2 ≤ 1} for
the two classes of descriptors.

boundaries for our particular problem (see Figure 3a). The approxi-
mation is not minimal due to pessimistic results coming from interval
dependency. Indeed, Equation 1 has multiple occurrences of the same
variable. We present a new approach for differentiable sets which fo-
cuses on the boundary (see Figure 3b).

We reinforce the separator on ∂ ProjX, the boundary of the projec-
tion. For our example, we use the knowledge of the locii of the vertical
tangents to X which are defined by





f(x, y, z) = 0,

∂f

∂z
(x, y, z) = 0.

(3)

In our case, that is

{
2x2 + 2.2xy + xz + y2 + z2 = 10,

x+ 2z = 0.
(4)
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(a) SepProj (b) Reinforced projection

Figure 3: Pavings of the projection along the z-axis of the set X =
{x, y, z ∈ R3 | 2x2 + 2.2xy + xz + y2 + z2 ≤ 10}.

SepProj was constructed from SX based on Equation 1. For the rein-
forced projection algorithm, we add C∂ ProjX based on the knowledge of
Equation 4.
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[3] Simon Rohou, Benôıt Desrochers and Fabrice Le Bars. The Codac
Library. Acta Cybernetica, Mar. 2024.



Maastricht University SWIM 2024 1

Solving non-linear constraints in
CDCL-style

Franz Brauße1, Konstantin Korovin 1, Margarita Korovina2

and Norbert Th. Muller3

1 The University of Manchester, UK
{franz.brausse,konstantin.korovin}@manchester.ac.uk

2 A.P. Ershov Institute of Informatics Systems, Novosibirsk, Russia
rita.korovina@gmail.com

3 Universität Trier, Germany
mueller@uni-trier.de

Keywords: Logic in Computer Science, Continuous Constraints, iRRAM-
computations

Abstract

We give a detailed overview of the ksmt calculus developed in a con-
flict driven clause learning framework for checking satisfiability of non-
linear constraints over the reals. Non-linear constraint solving natu-
rally arises in the development of formal methods for verification of
safety critical systems, program analysis and information management.
Implementations of formal methods are widely used to approve in ad-
vance that designed systems satisfy all specification requirements, such
as reliability, safety and reachability. Historically, there have been two
main approaches to deal with non-linear constrains: the symbolic one
originated by Tarski’s decision procedure for the real closed fields and
the numerical one based on interval constraint propagations. It is well
known that both approaches have their strength and weakness con-
cerning completeness, efficiency and expressiveness. Nowdays, merg-
ing strengths of symbolical and numerical approaches is one of the
challenging research areas in theoretical and applied computer science.
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The ksmt calculus successfully integrates strengths of symbolical
and numerical methods. The key steps of the decision procedure based
on this calculus contain assignment refinements, inferences of linear
resolvents driven by linear conflicts, backjumping and constructions
of local linearisations of non-linear components initiated by non-linear
conflicts. In [1] we showed that the procedure is sound and makes
progress by reducing the search space. This approach is applicable to a
large number of constraints involving computable non-linear functions,
piecewise polynomial splines, transcendental functions and solutions
of polynomial differential equations. In [2, 3] we proved, among other
results, that ksmt is a δ-complete decision procedure for bounded
problems. In this setting we discuss recent and future research work.
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Introduction

We consider the problem of approximating the solutions of the system
f(x) = 0, where f : Rn → Rp is a non-linear function. In particu-
lar, we will consider systems where p < n for which the solution set
X = {x ∈ Rn | f(x) = 0} has infinitely many solutions.

Interval methods can be used to over-approximate such sets in a
reliable way. They are often based on axis-aligned boxes [x] ∈ IRn.
When sets are described as non-linear systems, such as f(x) = 0, nat-
ural inclusion functions can be used to easily and reliably evaluate
boxes [f ]([x]). They can be employed in branch-and-prune algorithms
in order to pave the solution set X more accurately. However, these
methods involve bisections which comes with an exponential complex-
ity with respect to n. Contractor operators, often designed with poly-
nomial complexity, have been shown to overcome this issue by using
bisections as a last resort in exploration algorithms [2].

Contractors

A contractor on a set X, denoted by CX, is an operator that aims at
narrowing a box [x] ∈ IRn in order to reliably remove vectors of [x]
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that are not part of the set X. Algorithms exist to automatically build
contractors for a given non-linear equation; the state-of-the-art on this
topic is the HC4Revise algorithm [1].

As for natural inclusion functions, the efficiency of an HC4Revise

contractor will be impacted by multi-occurrences in the analytic ex-
pression of f . Solutions exist, such as symbolic rewriting or affine arith-
metic [6], but they are not always minimal, difficult to use, or based on
complicated algorithms. On the other hand, the use of centered-form
computations provides asymptotically minimal results, as shown in [3].

Centered form contractor

The centered form approach improves the contractions by involving
the Jacobian of f as expressed in Equation (1), where x is the center
of the box [x]:

fc([x]) = f(x) +
∂f

∂x

(
[x]

)(
[x]− x

)
. (1)

We propose an automatic way to obtain centered form contractors
for non-linear systems. First, the interval Jacobian ∂f

∂x

(
[x]

)
is com-

puted using Automatic Differentiation. Then, the matricial expression
of Equation (1) is treated using an efficient linear contractor with pre-
conditioning.

Implementation and results

The efficiency of the proposed contractor, called CtcInverse, will be
illustrated on several examples. One of them is taken from the litera-
ture [4] and given by the following function f : R3 → R2:

f(x) =

(
−x23 + 2x3 sin(x3x1) + cos(x3x2)

2x3 cos(x3x1)− sin(x3x2)

)
. (2)

The solution set X of Equation (2) for f(x) = 0 is illustrated
in Figure 1 for [x0] = [0, 2] × [2, 4] × [0, 10] and ϵ = 4 × 10−3. A
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comparison between the two contractors HC4Revise and CtcInverse

is given: these two algorithms are provided in Codac and are based
on the same elementary reverse operations provided by the GAOL li-
brary. The computation time difference is mainly due to the number
of boxes: CtcInverse allows asymptotically minimal contractions for
small boxes thanks to the centered form, and so a thinner and thus
faster approximation of X.

(a) X computed with HC4Revise.
Computation time: 4.51s. 27430 boxes.

(b) X computed with CtcInverse.
Computation time: 0.69s. 3713 boxes.

Figure 1: Example of set inversion of Equation (2) using the state-of-
the-art HC4Revise and the proposed CtcInverse contractors. The ap-
proximated three-dimensional solution sets are projected onto (x1, x2).

CtcInverse is now available in the Codac library [5] (v2.0). In
particular, the code of Figure 1b is given in Figure 2 as an example
of use of Codac. The user does not have to provide the Jacobian of
Equation (1), it is deduced by Automatic Differentiation. Codac is
available in C++, Python and Matlab languages and provided under
GNU LGPL. More information on: http://codac.io
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from codac import * # using Codac 2.0 at least

x = VectorVar(3)

f = AnalyticFunction([x], vec(

-sqr(x[2])+2*x[2]*sin(x[2]*x[0])+cos(x[2]*x[1]),

2*x[2]*cos(x[2]*x[0])-sin(x[2]*x[1])

))

ctc = CtcInverse(f, [[0],[0]])

pave([[0,2],[2,4],[0,10]], ctc, 0.004)

Figure 2: Inversion of Eq. (2) using the Codac library (here in Python).

References

[1] F. Benhamou, F. Goualard, L. Granvilliers, and J. F. Puget. Re-
vising hull and box consistency. In Proceedings of the International
Conference on Logic Programming, pages 230–244, 1999.

[2] Gilles Chabert and Luc Jaulin. Contractor programming. Artificial
Intelligence, 173(11):1079–1100, July 2009.

[3] Luc Jaulin. Asymptotically minimal interval contractors based on
the centered form; application to the stability analysis of linear
time-delayed differential equations. Acta Cybernetica, 2024.

[4] Rachid Malti, Milan R. Rapaić, and Vukan Turkulov. A unified
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Introduction

Solving a scaling problem saves time when designing a robotic plat-
form. By analyzing the characteristics of already existing systems, we
can deduce a set of parameters that must be respected between the
physical quantities of our new system.

(a) Daurade [5] (b) Riptide

Figure 1: Example of torpedo-like AUVs
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Torpedo-like AUV dimensioning

We consider the problem of dimensioning a torpedo-like AUV (Au-
tonomous Underwater Vehicle). The goal is to design a new robot
capable of operating in the trial pool we have at ENSTA Bretagne.

First, a set of equations involving the characteristic quantities of
such a robot [1, 2, 5] and a set of parameters need to be expressed to
solve this problem.

Then using examples of torpedo-like AUV characteristics, and con-
tractors [3, 4], the set of parameters compatible with these example
can be estimated.

Finally, from this estimated set of parameters, and imposed physi-
cal quantities on the new robot, the remaining unknown physical quan-
tities to design our new AUV could be deduced using a set inversion
algorithm [3, 4].
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Springer, 2001.

[4] Simon Rohou, Benoit Desrochers, and Fabrice Le Bars. The Codac
library. Acta Cybernetica, Mar. 2024.

[5] Simon Rohou, Luc Jaulin, Lyudmila Mihaylova, Fabrice Bars,
and Sandor Veres. Guaranteed computation of robot trajectories.
Robotics and Autonomous Systems, 93, 03 2017.



Maastricht University SWIM 2024 1

Ultra-Wideband based Smart Wheelchair
Localization using Interval Analysis
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Introduction

Autonomous navigation for Smart Wheelchairs (SW) [1] enables to
enhance the user’s autonomy, with, e.g. autonomous docking to a
charging station after going to bed. This requires reliable indoor lo-
calization. We aim at providing a confidence domain of the pose of a
SW, i.e. a box which is guaranteed to contain the true wheelchair po-
sition and orientation. The proposed indoor positioning system relies
on Ultra-WideBand (UWB) radio modules, with ranging capabilities.

Ultra-WideBand Sensors

A typical UWB-based indoor localization setup is a set of fixed UWB
nodes in the room, or anchors, from which mobile UWB nodes installed
on the robot, or tags, measure ranges. We installed such a setup with
four anchors in the room and four tags on a SW (see Fig. 1).

Range measurement between an anchor and a tag is performed
using two-way ranging, by measuring the time of flight of the UWB
signal. The actual range between the two UWB nodes can be deter-
mined, assuming line-of-sight (LOS) propagation. In practice, UWB
signals are also reflected or blocked by the environment (walls, furni-
ture, people, wheelchair). This may lead to measuring non-line-of-sight
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Figure 1: Experimental Setup.

(NLOS) propagation distances, which are longer than the actual dis-
tance between the two nodes.

Figure 2 shows the range error distribution of UWB data during
trials in which a user was driving the wheelchair while performing
daily-life tasks (ground truth comes from a motion capture system).
One can distinguish two sources of uncertainties. In LOS conditions,
uncertainties are coming from UWB sensors noise, easily handled by
a bounded-error model. In NLOS conditions, uncertainties are coming
mostly from multipath effects, providing range measurements greater
than the actual one, leading to outliers.

Wheelchair Pose Computation

We define the wheelchair pose domain computation as a CSP. Since
outliers in range measurements are always positive, we can avoid using
q-relaxed intersection [2] and GOMNE methods [3], as long as the
wheelchair is inside the polygon defined by the anchors.

• The wheelchair pose (x, y, θ) defines the transformation between
the world frame, and the body frame of the wheelchair (in which
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Figure 2: Histogram of the UWB range measurements error.

the tag positions are known).

• The measured UWB ranges dmeas provide constraints between the
anchor positions xa and the tag positions xt in the world frame.
To take NLOS propagation into account, we use only a single in-
equality constraint per measurement, assuming NLOS only yields
longer measured ranges: ∥xt − xa∥ < dmeas + bUWB, with bUWB the
UWB ranging error bound in LOS condition.

Solving the CSP with SIVIA and contractors, the set of all feasible
wheelchair poses (x, y, θ) compatible with UWB measurements is com-
puted.

Experimental Results

Experimental tests were conducted to record UWB data and validate
our localization method. UWB range measurement error bounds were
set to 24 cm. The midpoint of computed confidence domains is taken
as an estimation of the SW pose. Experimental results are presented
in Fig. 3, and demonstrate our method’s ability to deal with outliers
using only our bounded-error model. The mean horizontal position
error over all trials is 9.90 cm.
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Figure 3: Set-membership position estimation error (green), and con-
fidence lower and upper bounds (orange). The reference is at zero
(black)
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