
Fairly taking turns

Andrew Mackenzie∗and Vilmos Komornik† ‡

This draft: August 12, 2023

Abstract

We investigate the fair division of a sequence of time slots when each agent is
sufficiently patient. If agents have identical preferences, then we construct perfectly
equitable and efficient allocations. Otherwise, (i) if there are two agents, then we
construct envy-free allocations, (ii) if there are three agents, then we construct
proportional allocations, and (iii) in general, we construct approximately fair allo-
cations. Finally, we investigate achieving approximate fairness at each time period,
strategy-proofness, and a notion of computational simplicity.
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1 Introduction

1.1 Overview

We consider an idealized model of one of the simplest methods of achieving fairness:
taking turns. Everyday examples include children sharing the use of a toy, divorced
parents sharing the custody of a child, and friends rotating who chooses the next group
activity. Unlike other prominent methods of achieving fairness, taking turns does not
require a physical good that can be divided into parts, a currency with which one can
compensate another, or a randomization device; instead, time is divided. Remarkably,
though time is neither infinitely divisible nor homogeneous in our model, there are often
fair allocations.

In our model, the natural numbers {1, 2, ...} are time slots that are to be partitioned
into schedules, one for each of n agents. Each agent i has preferences over schedules that
may be represented by a utility function ui : 2

N → [0, 1], a countably additive probability
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measure in a large domain which notably includes geometric discounting with respect to
a personal discount factor δi ∈ (0, 1):

for each S ⊆ N, ui(S) = (1− δi)
∑
t∈S

δt−1
i .

Crucially, though most economic analysis assumes that agents share a discount factor
(say, equal to a market interest rate), we allow for agents to have personal discount
factors, which is natural when (i) payoffs are not monetary, due to differences in in-
tertemporal preferences, or (ii) payoffs are monetary, but agents have access to loans at
different interest rates.1 Previous work has emphasized that discount factor differences
have important implications for bargaining (Rubinstein, 1982), reputation (Fudenberg
and Levine, 1989), repeated games (Lehrer and Pauzner, 1999; Salonen and Vartiainen,
2008; Chen and Takahashi, 2012; Sugaya, 2015), preference aggregation toward a social
discount factor (Weitzman, 2001; Jackson and Yariv, 2015; Chambers and Echenique,
2018), and endogenous discounting (Kochov and Song, 2023); we investigate the impli-
cations of personal discount factors for fair division.

Our main results allow for a particularly large domain of utility functions because
stationarity, one of the defining behavioral features of geometric discounting (Koopmans,
1960), plays no role in any of our arguments. By a classic theorem (Kakeya, 1914;
Kakeya, 1915), if a countably additive probability measure ui : 2

N → [0, 1] is monotonic
with respect to earliness, then its range is the unit interval if and only if for each t ∈ N,
we have ui({t + 1, t + 2, ...}) ≥ ui({t}). Building on this condition, we say that for each
k ∈ [0,∞), ui is a kth-order Kakeya utility function if

for each t ∈ N, ui({t+ 1, t+ 2, ...}) ≥ kui({t}),

and we let Uk denote the class of these functions. Notice that if ui is geometric discounting
with respect to discount factor δi ∈ (0, 1), then for each k ∈ [0,∞), ui ∈ Uk if and only
if δi ≥ k

k+1
. More generally, we can compare the relative patience of two agents by the

order of their Kakeya utility functions: if ui ∈ Uk and uj ∈ Uk′\Uk for k > k′, then i is
more patient in the sense that he always measures the relative value of {t + 1, t + 2, ...}
to {t} to be at least k while j does not always do so.

Our main message is that there are fair allocations if agents are sufficiently patient,
which many of our results articulate using three classic notions of exact fairness. The
strongest, which we refer to as perfect equity, requires that every agent measures every
schedule to be worth exactly 1

n
(Steinhaus, 1949; Dubins and Spanier, 1961). We also

consider the weaker notion of no-envy, which requires that no agent measures another’s
schedule to be worth more than his own (Tinbergen, 1946; Foley, 1967). Finally, the
weakest classic notion we consider is proportionality, which requires that every agent
measures his schedule to be worth at least 1

n
(Steinhaus, 1948).

For our most general results where even proportionality proves elusive, we turn to three
notions of approximate fairness. First, for any margin of error ε > 0, we approximate
perfect equity using ε-perfect equity. Second, we consider two notions that have been
focal in the computer science literature: (i) envy-freeness up to one good, written as
EF1 (Budish, 2011), and (ii) envy-freeness up to any good, written as EFX (Caragiannis,
Kurokawa, Moulin, Procaccia, Shah, and Wang, 2019). The former allows i to envy j if

1Lehrer and Pauzner (1999) give the example of an employer who can borrow at a lower interest rate
than an employee.
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the envy can be eliminated by removing some time slot from j, while the latter allows i
to envy j if the envy can be eliminated by removing any time slot from j.

Finally, we complement our main message with further insights involving efficiency,
fairness throughout the procedure, incentive compatibility, and computational simplic-
ity. In particular, we consider (i) standard (Pareto) efficiency, (ii) eternal approximate
fairness, the requirement that at each point in time we have approximate fairness thus
far, (iii) strategy-proofness, the requirement that it is a dominant strategy for each agent
to honestly report his preferences, and (iv) myopia, the requirement that we can always
assign the first t time slots using only the utilities for these time slots.

For most of our results, the agents share a domain of admissible utility functions.
Notice that there may not even be proportional allocations if we allow Kakeya utility
functions with order less than n−1, as in this case the first time slot alone may be worth
more than 1

n
to everyone; thus we typically require utility functions to belong to Un−1,

sometimes with further restrictions. Altogether, we establish the following:

Identical preferences. For identical preferences, if n agents have a common utility
function u0 ∈ Un−1, then a perfectly equitable and efficient allocation can be constructed
using our Constrained Priorities procedure, which as a special case includes our
Iterative Greedy Algorithm procedure (Theorem 1). This result applies whenever
n agents share a discount factor δ0 ∈ [n−1

n
, 1), which also follows from a classic result

for repeated games (Sorin, 1986; Fudenberg and Maskin, 1991); see the discussion in
Section 1.2. We also show that under further domain restrictions, the Fudenberg-
Maskin procedure (adapted from repeated games for fair division) constructs such an
allocation that is moreover eternally EFX and eternally ε-perfectly equitable (Theorem 2).

Two agents. For n ≥ 2 agents who may have distinct preferences in Un−1, there may
not be any perfectly equitable allocations (Example 1), and the promising Iterative
Greedy Algorithm may not deliver proportional allocations (Example 2). That said,
for n = 2, if at least one of the agents has a utility function in U1, then an envy-free
allocation can be constructed using our version of the classic Divide and Choose
procedure (Theorem 3). We also show that even under further domain restrictions, no
mechanism that always selects proportional allocations is strategy-proof (Theorem 4) or
myopic (Theorem 5).

Three agents. For n ≥ 3 agents who may have distinct preferences in Un−1, the
existence of envy-free allocations is an open question. That said, for n = 3, if each agent i
has a utility function ui ∈ U2, then a proportional allocation can be constructed using
either our Iterative Apportionment procedure (Theorem 6) or our Simultaneous
Apportionment procedure (Theorem 7).

General case. For the general case where n agents may have distinct utility functions
in Un−1, the existence of proportional allocations is an open question. That said, for each
ε > 0, if each agent i has a monotonic utility function ui ∈ U 1−ε

ε
, then an allocation

that is ε-perfectly equitable, EF1, eternally ε-perfectly equitable, and eternally EF1 can be
constructed using a procedure from the literature (Caragiannis, Kurokawa, Moulin, Pro-
caccia, Shah, and Wang, 2019) that we call Round-Robin (Theorem 8). Moreover, by
relaxing exact fairness to allow approximate fairness, we escape our earlier impossibility
results: so long as we require that all utility functions are monotonic, Round-Robin is
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both strategy-proof and myopic (Theorem 9). Finally, if all utility functions are mono-
tonic, then an EFX allocation can be constructed using a procedure from the literature
(Lipton, Markakis, Mossel, and Saberi, 2004; Plaut and Roughgarden, 2020) that we call
Envy Graph (Theorem 10).

1.2 Related literature

For this discussion, we consider three categories of fair division models:

• divisible cake models, where a heterogeneous and infinitely divisible cake is to be
partitioned and utility functions are atomless probability measures;

• object models, where a (usually finite) collection of indivisible objects is to be par-
titioned and utility functions are probability measures; and

• classical exchange models, including the textbook model of consumer choice, where
there is a (usually finite) collection of homogeneous and infinitely divisible goods.

Our model is an object model with a preference restriction that gives it some, but not all,
of the features of a divisible cake model. If we allowed schedules to be randomly assigned,
we would have a classical exchange model where time slot probabilities are goods, and even
without randomization, the notion of competitive equilibrium from classical exchange
models offers an intriguing direction for future work. We use these three model categories
to discuss the related literature for our main axioms.

Perfect equity. Our strongest fairness notion implies the rest of the fairness notions
that we consider, as well as others such as egalitarian equivalence (Pazner and Schmeidler,
1978). Divisible cakes always have perfectly equitable allocations, and in fact this fairness
notion is so strong that it is only compatible with efficiency when preferences are identical
(Dubins and Spanier, 1961).2

Unfortunately, in our model, there need not be perfectly equitable allocations even
when n = 2 (see Example 1). That said, when agents share a discount factor, the ex-
istence of perfectly equitable allocations follows from a classic result for repeated games:
if the common discount factor is sufficiently high given the number of action profiles
in the stage game, then any convex combination of stage game payoffs can be achieved
without randomization by selecting action profiles with appropriate frequencies (Sorin,
1986; Fudenberg and Maskin, 1991).3 Interestingly, the constructive proof of Fudenberg
and Maskin (1991) involves a procedure that generates a sequence of action profiles such
that each action profile achieves its target discount weight, and the fair division result

2The standard proof of existence appeals to Lyapunov’s classic result that if µ : Σ → Rn is an
atomless, bounded, and countably-additive vector-valued measure, then its range is compact and convex
(Liapounoff, 1940). It follows directly that there is a slice that all agents agree is worth 1

n , and iterating
it follows that there is a perfectly equitable allocation. Unfortunately, this proof is not constructive.

3Indeed, simply apply the classic result to any repeated game (with the given common discount factor)
whose stage game is such that a fixed agent selects any agent to receive 1 while the others receive 0.
We remark that Sorin (1986) proves a slightly different result (with a proof that makes the cited result
clear): if the common discount factor is sufficiently high given the number of agents, then any convex
combination of stage game payoffs can be achieved by selecting mixed action profiles with appropriate
frequencies.
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also follows from simply reinterpreting the action profiles as agents and the target dis-
count weights as target utilities. Translated into fair division, the Fudenberg-Maskin
procedure iteratively selects an agent whose cumulative utility is lowest.

We show that the existence of perfectly equitable allocations extends to the case of
identical Kakeya utility functions using our Constrained Priorities procedure, which
is more flexible than the Fudenberg-Maskin procedure in that each time slot can be
assigned to any agent who has not yet received his target utility.4 As a special case, this
includes the Iterative Greedy Algorithm, or the iterative application of Rényi’s
Greedy Algorithm (Rényi, 1957), which has recently been applied in the context of
decision theory due to its remarkable continuity properties (Mackenzie, 2019). We re-
mark that with identical preferences, any perfectly equitable allocation is (i) a competitive
equilibrium from equal incomes outcome (Kolm, 1971; Varian, 1974) when each agent
is endowed with his schedule and the price of each time slot is its common value, and
(ii) an allocation that maximizes the Nash product, or the product of the agents’ utilities
(Nash, 1950); these properties remain focal in the fair division literature for models where
perfectly equitable allocations are not available.

No envy. For divisible cakes, there are at least five procedures for constructing envy-
free allocations when n = 3,5 and at least two for the general case,6 but unfortunately
none of these extends to our model—largely because we cannot ‘trim’ arbitrary sets. For
classical exchange, there are competitive equilibria (McKenzie, 1954; Arrow and Debreu,
1954), those for which the endowment is equal division are envy-free (Kolm, 1971; Varian,
1974), and when preferences are linear these allocations maximize the Nash product
(Eisenberg and Gale, 1959). For object models, there need not be competitive equilibria,
but a natural kind of approximate competitive equilibrium always exists; that said, its
approximation error is unbounded as the number of objects grows (Budish, 2011).

In our model, if n = 2, then we can construct an envy-free allocation using our version
of Divide and Choose, the ancient procedure dating back to at least the eighth or
seventh century BC (Lowry, 1987; Brams, Taylor, and Zwicker, 1995).7 Unfortunately,
this procedure does not generalize for n ≥ 3, and the existence of envy-free allocations
for the general case remains an open question.

Proportionality. The literature on cake division began with the Steinhaus proce-
dure for constructing proportional allocations when n = 3 and the more general Banach-
Knaster procedure for constructing proportional allocations when n is arbitrary (Stein-
haus, 1948). As with the envy-free procedures for cake division, these procedures do not
work in our model because we cannot ‘trim’ arbitrary sets.

When preferences are not identical, the Fudenberg-Maskin procedure need not

4The constructive proof of Sorin (1986) involves a procedure of intermediate flexibility: translated
into fair division, the Sorin procedure iteratively selects an agent who still requires at least 1

n of the
remaining utility.

5In particular, we have the Stromquist procedure (Stromquist, 1980), the Levmore-Cook pro-
cedure (Levmore and Cook, 1981), the Webb procedure (see Brams, Taylor, and Zwicker, 1995), the
Brams-Taylor-Zwicker procedure (Brams, Taylor, and Zwicker, 1995), and an application of the
Austin procedure for constructing a perfectly equitable partition when there are two agents (Austin,
1982). See Brams, Taylor, and Zwicker (1995) for an overview.

6In particular, we have the Brams-Taylor procedure (Brams and Taylor, 1995) and the Aziz-
Mackenzie procedure (Aziz and Mackenzie, 2016).

7In Hesiod’s Theogony, Prometheus divides an ox into two portions, then Zeus chooses.
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yield a proportional outcome.8 Similarly, the Iterative Greedy Algorithm need
not yield a proportional outcome—even if we let more impatient agents construct their
schedules earlier in the procedure (Example 2). That said, we introduce two procedures
for constructing proportional allocations when n = 3 (Iterative Apportionment and
Simultaneous Apportionment). The existence of proportional allocations for the
general case remains an open question.

Approximate fairness. For the general case, a variety of technical issues arise when
agents can have different discount factors—for example, the folk theorem for repeated
games does not hold (Lehrer and Pauzner, 1999), and even when there are two agents
the Pareto frontier can be everywhere discontinuous (Salonen and Vartiainen, 2008). In
order to investigate the general case, we consider three notions of approximate fairness:
ε-perfect equity, EF1, and EFX. We remark that in our model, if an EFX allocation
assigns each agent an infinite schedule, then it is envy-free, but the two properties are
not equivalent in general.

When there are finitely many objects, Nash product maximization delivers an EF1
allocation that is efficient (Caragiannis, Kurokawa, Moulin, Procaccia, Shah, and Wang,
2019), as does a faster algorithm that runs in polynomial time when valuations are
bounded (Barman, Krishnamurthy, and Vaish, 2018). Moreover, the Round-Robin
procedure delivers an EF1 allocation (Caragiannis, Kurokawa, Moulin, Procaccia, Shah,
and Wang, 2019), and if agents share a common ranking of the objects, the Envy Graph
procedure delivers an EFX allocation (Lipton, Markakis, Mossel, and Saberi, 2004; Plaut
and Roughgarden, 2020). We show that these latter insights extend to our model re-
gardless of the patience of the agents, and that the Round-Robin procedure moreover
delivers an ε-perfectly equitable outcome if agents are sufficiently patient. Interestingly,
when n = 3, an EF1 allocation where each agent consumes an interval can be constructed
using a discrete version of the Stromquist procedure (Bilò, Caragiannis, Flammini,
Igarashi, Monaco, Peters, Vinci, and Zwicker, 2022); we leave the general investigation
of fair allocations where agents consume intervals in our model for future work.

Strategy-proofness.9 For classical exchange economies, even if agents are restricted
to reporting linear preferences, strategy-proofness and efficiency (i) imply that one agent
consumes everything when there are two agents (Schummer, 1997), and (ii) are incom-
patible with all of our fairness notions when there are more than two agents (Cho and
Thomson, 2023). Any result for classical exchange with linear preferences applies directly
to cake division (Aziz and Ye, 2014), and moreover the former result remains true even
when dividing a circular cake into intervals (Thomson, 2007).

For cake division, early contributions identified positive results if (i) we allow ran-
domization when agents are risk neutral (Mossel and Tamuz, 2010), and (ii) we restrict
preferences to a dichotomous marginal valuation domain (Chen, Lai, Parkes, and Pro-
caccia, 2013); for an overview of more recent contributions on the latter topic see Bu,

8Indeed, suppose there are two agents who use geometric discounting, one with discount factor 0.51
and one with discount factor 0.99. In the Fudenberg-Maskin procedure, after the impatient agent
receives his first time slot (which is either the first time slot or the second time slot, depending on how
the tie is broken to assign the first time slot), a long interval of time slots will be assigned to the patient
agent while his utility is less than the impatient agent’s, after which it will be impossible for the impatient
agent to achieve 1

2 .
9We remark that this property is usually called truthfulness in the fair division literature, while

strategy-proofness is more common in economics.
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Song, and Tao (2023). The question of whether there are strategy-proof and proportional
mechanisms for a natural larger domain was raised in Chen, Lai, Parkes, and Procaccia
(2013) and recently answered for the case of two agents: it was first shown that any
such mechanism must involve some undesirable waste (Bei, Chen, Huzhang, Tao, and
Wu, 2017) and finally shown that there is no such mechanism at all (Bu, Song, and Tao,
2023).

For assigning finitely many objects, strategy-proofness and efficiency are incompat-
ible with all of our fairness notions (Klaus and Miyagawa, 2001). Moreover, strategy-
proofness is incompatible with (i) selecting an envy-free allocation whenever possible
(Lipton, Markakis, Mossel, and Saberi, 2004; see also Caragiannis, Kaklamanis, Kanel-
lopoulos, and Kyropoulou, 2009), (ii) maximizing the minimum utility (Bezáková and
Dani, 2005), and (iii) achieving EF1 without discarding any objects (Amanatidis, Birm-
pas, Christodoulou, and Markakis, 2017). That said, if we restrict preferences to a di-
chotomous object valuation domain, then we can simultaneously achieve group strategy-
proofness, EF1, and efficiency by maximizing the Nash product (Halpern, Procaccia,
Psomas, and Shah, 2020), and in fact these three objectives remain compatible if we
relax additivity to submodularity (Babaioff, Ezra, and Feige, 2021; Barman and Verma,
2022).

As observed by Thomson (2007), there are some unique technical challenges for an-
alyzing strategy-proofness in fair division models: (i) the restriction to additive utility
functions precludes standard arguments for rich preference domains, and (ii) indifference
curves can be extremely thick. This latter point is particularly salient in our model: for
many utility functions that we consider, each utility x ∈ (0, 1) is assigned to a continuum
of schedules (Erdős, Joó, and Komornik, 1990).10 Even so, we reinforce the finding from
the cake division literature that for two agents, there is no strategy-proof and proportional
mechanism, even on the restricted domain of sufficiently patient geometric preferences.

Before proceeding, we remark that several other problems of fairly taking turns have
been previously considered in the literature, such as taking turns winning at a low price
through tacit collusion in repeated auctions (Rachmilevitch, 2013), taking turns perform-
ing a chore with stochastic private costs in each period (Leo, 2017), taking turns selecting
objects (Brams and Taylor, 2000), forming a queue using monetary transfers (Dolan,
1978; Chun, 2016), ordering penalty kicks (Brams and Ismail, 2018; Anbarcı, Sun, and
Ünver, 2021; Brams, Ismail, and Kilgour, 2023), and ordering tennis serves (Brams, Is-
mail, Kilgour, and Stromquist, 2018). That said, these problems and their associated
models are not closely related to ours.

2 Model

2.1 Environments and economies

In our model, a countably infinite collection of time slots is to be partitioned into schedules
for the agents, and each agent has preferences over schedules that may be represented
by a countably additive probability measure. We distinguish between environments,

10In particular, if ui is a geometric discounting utility function with discount factor δi ∈ ( 2
1+

√
5
, 1),

then for each x ∈ (0, 1), there are a continuum of schedules S such that ui(S) = x (Theorem 3, Erdős,
Joó, and Komornik, 1990). For context, 2

3 > 2
1+

√
5
.
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where preferences are private information, and economies, where preferences are common
knowledge.

Definition: An environment is specified by a number n ∈ N as follows:

• N ≡ {1, 2, ..., n} is the set of agents.

• T ≡ {1, 2, ...} is the countably infinite collection of time slots.

• S ≡ 2T is the collection of schedules, which is each agent’s consumption space.

• U ⊆ [0, 1]S is the collection of countably additive probability measures on S,11 which
we call the full domain. Each u0 ∈ U is a utility function representing preferences
over schedules. A utility function profile u = (ui)i∈N is a member of UN .

• Π ⊆ SN is the collection of (partitional) allocations: for each π ∈ SN , we have
π ∈ Π if and only if (i) for each pair i, j ∈ N , πi ∩ πj = ∅, and (ii) ∪i∈Nπi = T .

An economy (n, u) is an environment and an associated utility function profile. Whenever
we refer to an arbitrary environment or economy, we assume all of the above notation.

In an environment, it is common knowledge that the preferences of the agents are
given by some utility function profile u ∈ UN , but each agent i ∈ N knows only his own
utility function ui. In an economy, the utility function profile is common knowledge.

2.2 Exact fairness and utility function domains

Most of our analysis concerns economies with complete information rather than environ-
ments with incomplete information. In particular, we are interested in the existence of
allocations that satisfy the following normative axioms, and in constructing these alloca-
tions whenever possible.

Definition: Fix an economy and let π ∈ Π. We say that π satisfies

• perfect equity if for each pair i, j ∈ N , ui(πj) =
1
n
;

• no-envy if for each pair i, j ∈ N , ui(πi) ≥ ui(πj);

• proportionality if for each i ∈ N , ui(πi) ≥ 1
n
; and

• efficiency if there is no π′ ∈ Π such that (i) for each i ∈ N , ui(π
′
i) ≥ ui(πi), and

(ii) for some i ∈ N , ui(π
′
i) > ui(πi).

It is easy to verify that perfect equity implies no-envy, which in turn implies propor-
tionality. In general, there are economies where (i) each agent has a utility function in
the full domain, and (ii) even proportional allocations do not exist—for example, this
is the case whenever each agent is extremely impatient in the sense that he assigns all
utility weight to the first time slot. That said, our results involve smaller domains which
guarantee the existence of fair allocations.

11That is, for each u0 ∈ U , we have (i) u0(T ) = 1, and (ii) for each S ∈ S, u0(S) =
∑

t∈S u0({t}).
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Definition: Fix an environment. A domain is a collection of utility functions D ⊆ U .
We define the domains (Uk)k∈[0,∞), UM, and UG as follows: for each u0 ∈ U and each
k ∈ [0,∞), we say that

• u0 ∈ Uk if for each t ∈ T , we have u0({t + 1, t + 2, ...}) ≥ ku0({t}), in which case
we say that u0 is kth-order Kakeya;

• u0 ∈ UM if u0({1}) ≥ u0({2}) ≥ ..., in which case we say that u0 is monotonic; and

• u0 ∈ UG if there is δ0 ∈ (0, 1) such that for each t ∈ T , we have u0({t}) = (1−δ0)δ
t−1
0 ,

in which case we say that u0 is geometric and that δ0 is the discount factor (for u0).

We remark that there are axiomatic foundations for Kakeya utility functions.12 As
discussed in the introduction, an agent with a higher-order Kakeya utility function is more
patient, and many of our results concern economies for which all agents are sufficiently
patient given the number of agents.

2.3 Approximate fairness and eternal approximate fairness

For our most general results, exact fairness proves elusive and thus we turn instead to
approximate fairness. We consider notions where an allocation might be declared ‘fair
enough’ if an undesired utility measurement is within a specified margin of error, if an
undesired comparison reverses after the removal of some time slot, or if an undesired
comparison reverses after the removal of any time slot.

Definition: Fix an economy, let π ∈ Π, and let ε > 0. We say that π is

• ε-perfectly equitable if for each triple i, j, j′ ∈ N , ui(πj) ∈ [ui(πj′)− ε, ui(πj′) + ε];

• envy-free up to one object (EF1) if for each pair i, j ∈ N such that πj ̸= ∅, there is
t ∈ πj such that ui(πi) ≥ ui(πj\{t}); and

• envy-free up to any object (EFX) if for each pair i, j ∈ N such that πj ̸= ∅ and each
t ∈ πj, ui(πi) ≥ ui(πj\{t}).

While our results only concern the approximate fairness notions defined above, the
literature has also considered others; we mention several prominent alternatives in our
concluding discussion (Section 4). We use the above notions to articulate both (i) when
an allocation is approximately fair, and (ii) when an allocation is eternally approximately
fair, in the sense that at each point in time, the assignment of the time slots thus far is
approximately fair.

12In particular, previous authors have investigated when a preference relation over events in a σ-
algebra may be represented by a probability measure, usually in the context of representing beliefs
(Bernstein, 1917; de Finetti, 1937; Koopman, 1940; Savage, 1954). Our work is most closely related to
Mackenzie (2019), who proved that under standard axioms, monotone continuity (Villegas, 1964) and
an ordinal analogue of our third-order Kakeya condition are together sufficient to guarantee a unique
such representation. Without the third-order Kakeya condition, a probability measure representation
can be guaranteed with the necessary and sufficient conditions of Chateauneuf (1985). For geometric
discounting, a discount factor that is at least 1

2 must be unique even in our discrete model (Kettering
and Kochov, 2021).
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Definition: Fix an economy, let π ∈ Π, and let ε > 0. For each i ∈ N and each
t ∈ {0} ∪ T , define the partial schedule for i at t by πi↾t ≡ πi ∩ {1, 2, ..., t}. Moreover,
define the partial allocation at t by π↾t ≡ (πi↾t)i∈N . We say that π is

• eternally ε-perfectly equitable if for each t ∈ T and each triple i, j, j′ ∈ N , ui(πj↾t) ∈
[ui(πj′↾t)− ε, ui(πj′↾t) + ε];

• eternally EF1 if for each t ∈ T and each pair i, j ∈ N such that πj↾t ̸= ∅, there is
t′ ∈ πj↾t such that ui(πi↾t) ≥ ui(πj↾t\{t′}); and

• eternally EFX if for each t ∈ T , each pair i, j ∈ N such that πj↾t ̸= ∅, and each
t′ ∈ πj↾t, ui(πi↾t) ≥ ui(πj↾t\{t′}).

In other words, each condition requires that for each t ∈ T , π↾t must be approximately
fair, where approximate fairness is articulated using ε-perfect equity, EF1, and EFX,
respectively. This verbal description serves to formally define these approximate fairness
notions for partial allocations. We remark that we define partial schedules and partial
allocations at 0 simply to facilitate inductive arguments.

2.4 Properties for mechanisms

Our analysis of complete information economies yields many statements with the follow-
ing format: if there are n agents and each has a utility function in D, then there are
fair allocations. In this context, we use the term procedure to mean an algorithm that
(i) takes as input an economy (n, u) with u ∈ DN , and then (ii) performs a sequence of
operations in order to construct a fair allocation π as output.

Given such a result, we can further investigate environments where it is common
knowledge that the utility function profile belongs to DN , but where each agent knows
only his own utility function. In particular, we investigate direct mechanisms that (i) ask
each agent to report his utility function, and then (ii) return an allocation that is fair
according to the reports. In this context, we use the term mechanism to mean a function
that maps each reported utility function profile in DN to an allocation. We emphasize
that while each procedure yields an associated mechanism—in particular, the mechanism
that feeds each reported utility function profile as input to the procedure in order to return
the procedure’s output—we deliberately avoid using the terms procedure and mechanism
interchangeably in order to avoid confusion.

Our investigation of mechanisms involves both incentive compatibility and computa-
tional simplicity.

Definition: Fix an environment and a domain D. A mechanism is a function M :
DN → Π that comes with the following associated notation: (i) for each i ∈ N , we let
Mi(u) ∈ S denote the schedule assigned to i in allocation M(u), and (ii) for each t ∈ T ,
we let M(t|u) ∈ N denote the agent who consumes time slot t in allocation M(u). We
say that a mechanism M is

• strategy-proof if for each i ∈ N , each u ∈ DN , and each u′
i ∈ D,

ui(Mi(u)) ≥ ui(Mi(u
′
i, u−i)); and
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• myopic if for each t ∈ T and each pair u, u′ ∈ DN such that for each i ∈ N and
each t′ ∈ {1, 2, ..., t} we have ui({t′}) = u′

i({t′}),

M(t|u) = M(t|u′).

Strategy-proofness requires that in the game form where each agent strategically re-
ports his utility function, honesty is always a dominant strategy for each agent. Myopia
requires that for each t, we can always assign the first t time slots using only the utilities
for these time slots. Notice that myopia has no bite on any subdomain of UG, as in this
case u0({1}) determines u0; thus this property only has substance on richer domains.

3 Results

3.1 The single-agent technique

Before proceeding to our main results for fair division, it is useful to first consider a
simple problem that a single agent in an economy might try to solve without input from
the others. In particular, suppose agent i is given ‘source’ schedule S and target value
v ∈ [0, ui(S)], then asked to construct schedule S∗ ⊆ S such that ui(S

∗) = v. Under
what conditions can he succeed?

In the special case that S = T and ui is geometric discounting with discount factor 1
2
,

the binary expansion of v provides an easy solution—for example, for v = 5
8
, the binary

expansion is 0.101 and the schedule S∗ = {1, 3} is a solution. Notice that the binary
expansion for v is constructed using a greedy algorithm: write the digits in sequence, and
write 1 for the next digit if and only if the written value will not exceed v. The natural
generalization of this procedure was notably investigated in the context of representations
more general than binary expansions (Rényi, 1957), and is an important tool for our
single-agent problem.

Definition: Greedy Algorithm. Fix an economy. For each i ∈ N , each S ∈ S, and each
v ∈ [0, ui(S)], let Gi(v|S) ⊆ S denote the greedy schedule (for agent i given source S and
target v) constructed by beginning with an empty basket,13 considering the time slots
in S in sequence, and adding each time slot to the basket if and only if the value of the
basket according to ui will not exceed v.

This procedure may fail to deliver a schedule with the desired value even when there
is a solution—for example, if S = {1, 2, 3}, ui({1}) = 0.3, ui({2}) = 0.2, ui({3}) = 0.15,
and v = 0.35, then the Greedy Algorithm will construct {1}, whose value is not v,
even though there is solution {2, 3}. That said, this procedure always succeeds if the
source event is sufficiently divisible in the following manner:

Definition: Fix an economy. For each i ∈ N , each k ∈ {0, 1, ...}, and each S ∈ S, we
say that S is k-divisible for i if for each t ∈ S, ui({t′ ∈ S|t′ > t}) ≥ kui({t}).

13At a high level, each of our procedures can be understood in terms of baskets and flags, such that
baskets receive time slots and at each step a basket represents the schedule of time slots it has thus far
received, with agents placing flags in baskets to determine which basket receives a given time slot or
which agent receives a given basket. We describe each of our procedures in this manner.
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In particular, it follows from a classic theorem (Kakeya, 1914; Kakeya, 1915) that if
preferences are monotonic with respect to earliness, then the agent can construct a subset
of source schedule S with any target value in [0, ui(S)] if and only if he considers S to be
1-divisible, in which case a solution can be constructed using the Greedy Algorithm;
see also Volume I, Part One, Problem 131 of Pólya and Szegö (1925) and Jones (2011).

Our first result generalizes these findings; it implies that if S is k-divisible, then the
agent can iteratively solve this problem k times, provided the targets {v1, v2, ..., vk} satisfy∑

vk ≤ ui(S). We remark that an ordinal analogue of this technique was applied in the
context of decision theory (Mackenzie, 2019).

Proposition 1: Fix an economy. For each i ∈ N , each k ∈ N, each S ∈ S that is
k-divisible for i, and each v ∈ [0, ui(S)], if S

∗ = Gi(v|S), then

• ui(S
∗) = v, and

• S\S∗ is (k − 1)-divisible for i.

The proof is in Appendix 1.

3.2 Identical preferences

We begin our investigation of fair allocations with the case where n agents have a common
utility function u0 ∈ Un−1. In this case all allocations are efficient, and it follows easily
from Proposition 1 that there are perfectly equitable allocations. Indeed, consider the
Iterative Greedy Algorithm, where in sequence each agent constructs his own
schedule: agent 1 takes T as source schedule and 1

n
as target value to construct π1, then

agent 2 takes T\π1 as source schedule and 1
n
as target value to construct π2, and so on

for the first n − 1 agents, with the remaining time slots finally assigned to agent n. By
Proposition 1, the resulting allocation is perfectly equitable.

Remarkably, the agents need not be nearly so systematic to successfully construct
a perfectly equitable allocation: our more general Constrained Priorities procedure
works as well. For the given economy, the procedure is initialized by specifying a priority
profile, or a priority order over the agents for each time slot t, in any manner. To begin,
there are n baskets, and each is immediately assigned to an agent. The time slots are
assigned to baskets in sequence, and when assigning time slot t, a flag is placed in the
basket of agent i if and only if the basket’s value (according to the common utility
function) would exceed 1

n
should it receive t. Time slot t is assigned to the basket of the

agent whose priority for t is highest, under the constraint that it should not be assigned
to a basket with a flag, and then all flags are removed and we proceed to the next time
slot. In order to show that the procedure is well-defined, we prove that there is always
at least one basket with no flag.

Observe that Constrained Priorities coincides with the Iterative Greedy
Algorithm when the priority order of every time slot orders the agents by index. That
said, the Constrained Priorities formulation has an important practical advantage:
after the first t time slots are assigned and consumed, it is easy to calculate which agent
should receive time slot t+ 1 before it is too late for t+ 1 to be consumed.

Our first main result states that no matter how priorities are set, the associated
Constrained Priorities allocation is perfectly equitable. For readability, we follow the
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presentation style used for the Deferred Acceptance procedure (Gale and Shapley,
1962), in that we formally define Constrained Priorities implicitly by its associated
proof, omitting a separate explicit (and notation-heavy) definition. We also pursue this
presentation style for the other procedures associated with our main results.

Theorem 1: Fix an economy. If there is u0 ∈ Un−1 such that for each i ∈ N , ui =
u0, then for any priority profile, the Constrained Priorities procedure constructs a
perfectly equitable and efficient allocation.

The proof is in Appendix 2. As we claimed earlier, any Constrained Priorities
outcome is a competitive equilibrium outcome when each agent is endowed with his
schedule and the price of each time slot is its common value, and it maximizes the
Nash product. Indeed, the first claim is true because each agent’s income is 1

n
and the

price of any schedule is its utility; the second claim is true because ( 1
n
)n maximizes the

Nash product on the simplex with n vertices, which is the set of feasible utility vectors.
Though we know little about competitive equilibria and Nash product maximization when
preferences are not identical in our model, these positive results for the case of identical
preferences suggest that these might be promising directions for future research.

We conclude this section by establishing that under the additional assumption that
preferences are monotonic, we can moreover achieve eternal approximate fairness by
custom-tailoring the priorities to the given economy. In particular, if we generate the
priorities as we assign the time slots by always prioritizing an agent whose cumulative
utility is lowest, then the result is the Fudenberg-Maskin procedure adapted from re-
peated games for fair division (Fudenberg and Maskin, 1991), and this procedure performs
extremely well.

Theorem 2: Fix an economy and let ε ∈ (0, 1]. If there is u0 ∈ Un−1 ∩ UM such that
for each i ∈ N , ui = u0, then the Fudenberg-Maskin procedure constructs a perfectly
equitable and efficient allocation that is eternally EFX. If, moreover, u0 ∈ U 1−ε

ε
, then this

allocation is moreover eternally ε-perfectly equitable.

The proof is in Appendix 3. We remark that our positive results for this section have
relied on the fact that the common utility function is common knowledge: we analyze
mechanisms that ask agents to report their preferences only after this section in order to
allow for the possibility that the reported preferences are not identical.

3.3 Two agents

As the case where there is a single agent is a special case of identical preferences, we next
consider the case where there are two agents. Unfortunately, there need not be perfectly
equitable allocations when agents have different preferences:

Example 1: Let N = {1, 2}, let u1 be geometric discounting with discount factor δ1 =
1
2
,

and let u2 be geometric discounting with discount factor δ2 > 1
2
. Then u1, u2 ∈ U1 but

there is no perfectly equitable allocation: the impatient agent finds {1} and {2, 3, ...} to
be the only schedules worth 1

2
, while the patient agent finds the former to be less valuable

and the latter to be more valuable.
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What about envy-free allocations? When there are two agents, every proportional al-
location is envy-free, as an agent who believes he has received at least 1

2
does not envy the

other agent. Given its usefulness for constructing proportional allocations when prefer-
ences are identical, the Iterative Greedy Algorithm offers a particularly promising
approach: simply have one agent construct a schedule for himself that he values 1

2
, leaving

the rest for the other agent.
Unfortunately, without identical preferences, the Iterative Greedy Algorithm

may fail even when there are two agents with geometric utility functions: if the more
patient agent goes first, then he may begin by taking a set of consecutive time slots that
the impatient agent values more than 1

2
. This seems easy to address by having the agents

construct their schedules in order of impatience, and at first glance this procedure appears
quite promising for any number of agents: if schedule S is k-divisible to impatient agent 1
with discount factor δ1, then it is also k-divisible to patient agent 2 with discount factor
δ2 > δ1, as for each t ∈ S,

u2({t′ ∈ S|t′ > t})
u2({t})

=
∑

t′∈S|t′>t

δt
′−t
2 >

∑
t′∈S|t′>t

δt
′−t
1 =

u1({t′ ∈ S|t′ > t})
u1({t})

≥ k.

That said, the following example illustrates that the Iterative Greedy Algorithm
may fail no matter how the agents are ordered.

Example 2: The Iterative Greedy Algorithm does not guarantee proportionality.
Let N = {1, 2}, let u1 be geometric discounting with discount factor δ1 that is the smallest
δ ∈ (0, 1) such that

(1− δ) +

(
δ + δ2 + δ4

δ + δ2 + δ3 + δ4 + δ5

)
δ5 =

1

2
,

or δ1 ≈ 0.536, and let u2 be geometric discounting with discount factor δ2 = 0.95. Then
u2(G1(

1
2
|T )) > 1

2
and u1(G2(

1
2
|T )) > 1

2
, so for both orders of the agents, the Iterative

Greedy Algorithm does not generate a proportional allocation. See Appendix 4 for a
detailed explanation.

Though the Iterative Greedy Algorithm does not provide a general method for
constructing proportional allocations, when there are two agents we can construct such
allocations that are moreover envy-free using Divide and Choose. For our version of
this classic procedure, the divider fills one basket using the Greedy Algorithm for
source schedule T and target value 1

2
, then fills a second basket with the remaining time

slots. The chooser then takes the basket he prefers, leaving the other for the divider. It
follows easily from Proposition 1 that the resulting allocation is envy-free, and this holds
regardless of the patience of the chooser so long as the divider is sufficiently patient:

Theorem 3: Fix an economy. If n = 2, then for each i ∈ N such that ui ∈ U1, the
Divide and Choose procedure with i as divider constructs an envy-free allocation.

We omit the straightforward proof. This result suggests a natural question: under the
given hypotheses, are there envy-free allocations that are moreover efficient? In general,
there may be no such allocation in fair division models, such as when partitioning a
circular cake into intervals (Thomson, 2007). That said, the existence of such an allocation
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is in fact guaranteed in our model under the given hypotheses, which follows from a
topological observation about proportional allocations for any number of agents.

Observation 1: Fix an economy. If there is a proportional allocation, then there is a
proportional allocation that is efficient.

This observation follows from standard topological arguments; we sketch these argu-
ments but omit the details. First, SN = (2T )N is compact in the product topology by
Tychonoff’s theorem, and it is straightforward to show that Π is compact as a closed sub-
set of SN . Second, a countably additive probability measure ui : 2

T → [0, 1] is continuous,
and thus the associated mapping u∗

i : Π → [0, 1] given by u∗
i (π) ≡ ui(πi) is continuous.

Altogether, then, the set Π∗ of allocations for which each agent receives a utility of at
least 1

n
is compact as a closed subset of Π, and by hypothesis it is nonempty; thus any

strictly monotonic and continuous function of utilities (such as the Nash product) is
maximized on Π∗ by an allocation that is proportional and efficient.

Under the given hypotheses, Theorem 3 guarantees an envy-free allocation. Any such
allocation is proportional, so by Observation 1 there is an allocation that is proportional
and efficient. Finally, when there are two agents, any proportional allocation is envy-free.
Altogether, we have established the following.

Corollary 1: Fix an economy. If (i) n = 2, and (ii) there is i ∈ N such that ui ∈ U1,
then there is an envy-free allocation that is efficient.

Given that fair allocations exist, could we design useful mechanisms that ask agents to
report their preferences in order to implement fair allocations when preferences are private
information? Unfortunately, we conclude this section with two negative results about
mechanisms. First, even if the designer knows that all utility functions are geometric,
any mechanism that always selects proportional allocations necessarily incentivizes agents
to misreport their preferences.

Theorem 4: Fix an environment. If n = 2, then for the domain U1 ∩ UG, there is no
strategy-proof mechanism that always selects proportional allocations.

The proof is in Appendix 5. Second, even if the designer knows that all utility
functions are monotonic, proportional allocations cannot be computed using myopic cal-
culation algorithms.

Theorem 5: Fix an environment. If n = 2, then for the domain U1 ∩ UM, there is no
myopic mechanism that always selects proportional allocations.

The proof is in Appendix 6.

3.4 Three agents

For three agents, the existence of envy-free allocations is an open question. That said,
we introduce two procedures for constructing proportional allocations.

In Iterative Apportionment, the three agents collaboratively fill and assign a
first basket, then the remaining agents collaboratively fill and assign a second basket,
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and finally the third agent receives the rest of the time slots. When filling the first
basket, the time slots are considered in sequence, and at time slot t each agent places a
flag if and only if he believes that the basket’s value would exceed 1

3
should it receive t.

If there are no flags, then t is added; if there is one flag, then t is added and the agent
who placed the flag receives the basket; if there are multiple flags, then t is skipped. The
process is the same when filling the second basket, except that the time slots in the first
basket are not considered.

In Simultaneous Apportionment, the three agents begin simultaneously filling
three baskets. The time slots are considered in sequence, and at time slot t each agent
places a flag in any basket whose value he believes would exceed 1

3
should it receive t; the

time slot is then placed in any basket with a minimal number of flags. If this basket had
no flags, then all agents proceed to t+ 1, while if it had at least one flag, then an agent
who placed one of its flags immediately receives the basket and exits; there are then two
cases. If the taken basket had only one flag, then the two remaining agents continue as
before with the remaining two baskets. Otherwise, we prove that the taken basket only
had two flags; let i∗ denote the remaining agent who placed one of those flags. In this
case, we prove that i∗ necessarily placed one other flag, and this basket is assigned to
him, though it is at this point only partially filled. To conclude, i∗ divides the remaining
time slots into two parts he considers equal using the Greedy Algorithm, the final
agent chooses the part that he prefers, and i∗ receives his basket with the unchosen part
while the final agent receives the final basket with his chosen part.

Each of these procedures is similar in spirit to a classic procedure for fairly dividing
the unit interval when there are no atoms. First, the Banach-Knaster procedure in-
volves iterative apportionment: the n agents iteratively construct and assign the smallest
interval that includes the leftmost remaining point and that some agent values 1

n
(Stein-

haus, 1949). Second, the Stromquist procedure involves simultaneous apportionment:
(i) for each leftmost interval, each of the three agents specifies the cut point at which
he would be indifferent between the middle interval and the rightmost interval, and the
median cut point determines a candidate partition, and (ii) the agents simultaneously
consider the candidate partitions as the leftmost interval grows until one of the agents
declares that he is indifferent between the leftmost interval and every interval in the
candidate partition whose closure includes his cut point, at which point the candidate
partition is compatible with an envy-free allocation (Stromquist, 1980). Notice, however,
that both procedures rely heavily on the fact that the family of intervals {[0, x]}x∈[0,1] has
the following properties: (i) the agents agree on how to rank the members of this family,
and (ii) each agent’s utility function maps this family onto the unit interval. Neither of
our procedures involve such a family of schedules, and yet nevertheless both construct
proportional allocations.

Theorem 6: Fix an economy. If (i) n = 3, and (ii) for each i ∈ N , ui ∈ U2, then the
Iterative Apportionment procedure constructs a proportional allocation.

Theorem 7: Fix an economy. If (i) n = 3, and (ii) for each i ∈ N , ui ∈ U2, then the
Simultaneous Apportionment procedure constructs a proportional allocation.

The proof of Theorem 6 is in Appendix 7, and the proof of Theorem 7 is in Appendix 8.
By Observation 1, we immediately have the following.
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Corollary 2: Fix an economy. If (i) n = 3, and (ii) for each i ∈ N , ui ∈ U2, then there
is a proportional allocation that is efficient.

3.5 The general case

For four or more agents, the existence of proportional allocations is an open question;
we discuss why Iterative Apportionment and Simultaneous Apportionment do
not generalize in our concluding discussion (Section 4). That said, we can construct
approximately fair allocations using two procedures from the literature, which we refer to
as Round-Robin (Caragiannis, Kurokawa, Moulin, Procaccia, Shah, and Wang, 2019)
and Envy Graph (Lipton, Markakis, Mossel, and Saberi, 2004; Plaut and Roughgarden,
2020).

In the general Round-Robin procedure, each agent begins with an empty basket,
the agents form a queue according to index, and at each step the agent at the front of the
queue adds his most-preferred unassigned time slot to his basket and then proceeds to
the back of the queue. If each agent has monotonic preferences, then at each step t the
agent at the front of the queue takes time slot t; in this case each agent i ∈ N receives the
schedule {nx+i|x ∈ {0, 1, ...}}. Remarkably, this simple procedure is both approximately
fair and eternally approximately fair if agents are sufficiently patient:

Theorem 8: Fix an economy and let ε ∈ (0, 1]. If for each i ∈ N , ui ∈ UM, then the
Round-Robin procedure constructs an allocation that is EF1 and eternally EF1. If,
moreover, for each i ∈ N we have ui ∈ U 1−ε

ε
, then this allocation is moreover ε-perfectly

equitable and eternally ε-perfectly equitable.

The proof is in Appendix 9. Observe that by relaxing exact fairness to allow approx-
imate fairness, we have escaped our earlier impossibility results for mechanisms:

Theorem 9: Fix an environment. For the domain UM, the Round-Robin mechanism
is both strategy-proof and myopic.

We omit the straightforward proof. Unfortunately, however, Round-Robin cannot
guarantee EFX: no-envy and EFX are equivalent for allocations where all schedules are
infinite, and Round-Robin generally constructs such an allocation where the first agent
is envied by the others.

We conclude by analyzing the Envy Graph procedure for agents with monotonic
preferences. In this procedure, each agent begins with an empty basket, and at each step,
the envy graph is the directed graph with nodes in N such that there is a directed edge
from i to j if and only if i envies j. If the envy graph has any cycles, then a cycle is selected
and the agents in this cycle exchange baskets, such that each agent receives the basket
of the next agent in the cycle and thus becomes better off. This is repeated until the
envy graph has no cycles, which necessarily happens after a finite number of exchanges
(Lipton, Markakis, Mossel, and Saberi, 2004). At this point, the current time slot is
assigned to an agent who is not envied, and as preferences are monotonic we have that
the resulting partial allocation is EFX (Plaut and Roughgarden, 2020). Each basket’s
limit schedule is the union of its schedules across all time periods, and there is some
matching of baskets to agents that occurs immediately after the time slot is assigned for
an infinite collection of time slots; the baskets’ limit schedules are assigned to the agents
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using any such matching. The resulting allocation is EFX, regardless of the patience of
the agents:

Theorem 10: Fix an economy. If for each i ∈ N , ui ∈ UM, then the Envy Graph
procedure constructs an allocation that is EFX (and thus EF1).

The proof is in Appendix 10.

4 Discussion

We conclude by discussing several possible directions for future research. We begin with
the open question we consider most important:

Conjecture: Fix an economy. If for each i ∈ N , ui ∈ Un−1, then there is a proportional
allocation.

This appears to be a difficult problem for several reasons. First, the promising Iterative
Greedy Algorithm does not work. Second, no procedure that works is associated with
a myopic mechanism. Third, Iterative Apportionment works for n = 3 but not n > 3
because (i) a time slot is only skipped in a given round if multiple agents place a flag,
and (ii) there are n − 1 rounds; we use n = 3 to conclude that whenever a time slot is
skipped, at least one of the active agents placed a flag each time it was skipped thus far.
Fourth, Simultaneous Apportionment works for n = 3 but not n > 3 because for
each time slot, each agent can place at most n− 1 flags; we use n = 3 to conclude that if
each of the n baskets has multiple flags, then it is possible to assign each agent a basket
in which he placed a flag. Altogether, then, it seems that this solving this problem will
require some new ideas.

If the general existence of proportional allocations were established, then there would
be several interesting next steps. First, one might investigate the general existence of
envy-free allocations; this is how the literature on cake division developed. Second, one
might investigate the construction of proportional and efficient allocations—indeed, Ob-
servation 1 states that if there are proportional allocations, then there are proportional
allocations that are moreover efficient, but there is no reason to believe that any of our
procedures produces efficient allocations (unless preferences are identical). These are two
interesting directions, but there are of course many other intriguing possibilities.

Finally, one might investigate alternative notions of approximate fairness. In our
model, it follows from Theorem 1 that assigning each agent his maximin share (Hill,
1987; Budish, 2011) is equivalent to proportionality, but prominent notions of approxi-
mate fairness that we have not considered here include near jealousy-freeness (Gourvès,
Monnot, and Tlilane, 2014), proportionality up to one good (Conitzer, Freeman, and Shah,
2017), equitability up to the highest utility (Suksompong, 2019), and competitive equilibria
in nearby Fisher markets (Barman and Krishnamurthy, 2019). In each case, one might
either investigate the approximate fairness notion directly or investigate the associated
eternal approximate fairness notion.
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Appendix 1

In this appendix, we prove Proposition 1.

Proposition 1 (Restated): Fix an economy. For each i ∈ N , each k ∈ N, each S ∈ S
that is k-divisible for i, and each v ∈ [0, ui(S)], if S

∗ = Gi(v|S), then

• ui(S
∗) = v, and

• S\S∗ is (k − 1)-divisible for i.

Proof: Assume the hypotheses. The conclusion is trivial if v ∈ {0, ui(S)}, so assume
ui(S) > v > 0. By construction, ui(S

∗) ≤ v.
We first prove ui(S

∗) = v. Since ui(S) > v ≥ ui(S
∗), thus S\S∗ is nonempty. Then

necessarily S\S∗ is infinite; else for t = maxS\S∗, since S is 1-divisible for i and since t
was skipped when constructing S∗, thus

ui(S
∗) = ui({t′ ∈ S∗|t′ < t}) + ui({t′ ∈ S|t′ > t})

≥ ui({t′ ∈ S∗|t′ < t}) + ui({t})
> v,

contradicting ui(S
∗) ≤ v. For each t ∈ S\S∗,

ui(S
∗) + ui({t}) ≥ ui({t′ ∈ S∗|t′ < t}) + ui({t})

> v,

so ui({t}) > v − ui(S
∗). Since limt∈S\S∗ ui({t}) = 0,14 thus ui(S

∗) ≥ v, so ui(S
∗) = v, as

desired.
To conclude, for each t ∈ S\S∗, by construction ui({t}) ≥ ui({t′ ∈ S∗|t′ > t}); thus

ui(t
′ ∈ S\S∗|t′ > t}) = ui({t′ ∈ S|t′ > t})− ui({t′ ∈ S∗|t′ > t})

≥ kui({t})− ui({t})
= (k − 1)ui({t}),

so S\S∗ is (k − 1)-divisible for i, as desired. ■

Appendix 2

In this appendix, we prove Theorem 1.

Theorem 1 (Restated): Fix an economy. If there is u0 ∈ Un−1 such that for each
i ∈ N , ui = u0, then for any priority profile, the Constrained Priorities procedure
constructs a perfectly equitable and efficient allocation.

Proof: Assume the hypotheses. We in fact prove a more general result. Let v ∈ [0, 1]N

such that
∑

vi = 1; we use Constrained Priorities to construct an allocation π such

14Because ui is a countably additive probability measure, 1 =
∑

t∈T ui({t}) = limt′∈T

∑t′

t=1 ui({t}),
which directly implies limt∈T ui({t}) = 0. We use this observation freely throughout our proofs.
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that for each i ∈ N , u0(πi) = vi. The theorem follows for the case that for each i ∈ N ,
vi =

1
n
.

To begin, there are n empty baskets, and each is immediately assigned to an agent.
The time slots are assigned to baskets in sequence, and when assigning time slot t, a flag
is placed in the basket of agent i if and only if its value (according to the common utility
function) would exceed the target vi should it receive t. Time slot t is assigned to the
basket of the agent whose priority for t is highest, under the constraint that it should not
be assigned to a basket with a flag.

Assume, by way of contradiction, that there is a time slot for which each basket has
a flag. Let t be the earliest such time slot, and for each i ∈ N , let πt−1

i be the schedule
in the basket of i before t is assigned. Then

u0({1, 2, ..., t− 1}) + nu0({t}) =
∑
i∈N

u0(π
t−1
i ∪ {t})

>
∑
i∈N

vi

= 1,

so nu0({t}) > u0({t}) + u0({t+ 1, t+ 2, ...}), contradicting that u0 ∈ Un−1.
Thus the procedure constructs an allocation π, so

∑
i∈N u0(πi) = 1 =

∑
i∈N vi. By

construction, for each i ∈ N , u0(πi) ≤ vi; thus for each i ∈ N , u0(πi) = vi, as desired. ■

Appendix 3

In this appendix, we prove Theorem 2. Before proceeding, we remark that formally, the
Fudenberg-Maskin procedure involves some arbitrary tie-breaking, and we prove that
the resulting allocation satisfies the desired properties regardless of how this is done.

Theorem 2 (Restated): Fix an economy and let ε ∈ (0, 1]. If there is u0 ∈ Un−1 ∩UM

such that for each i ∈ N , ui = u0, then the Fudenberg-Maskin procedure constructs a
perfectly equitable and efficient allocation that is eternally EFX. If, moreover, u0 ∈ U 1−ε

ε
,

then this allocation is moreover eternally ε-perfectly equitable.

Proof: Assume the hypotheses and let π be the Fudenberg-Maskin allocation. Since
the Fudenberg-Maskin procedure is a Constrained Priorities procedure, thus by
Theorem 1 we have that π is perfectly equitable and efficient.

To prove that π is eternally EFX, we proceed by induction. For the base step, observe
that π↾0 is EFX. For the inductive step, let t ∈ T be such that π↾t−1 is EFX. Since (i) π↾t−1

is EFX, (ii) no agent envies i at π↾t−1, and (iii) u0 ∈ UM, thus π↾t is EFX: any agent who
envies i at π↾t would not do so if t or any earlier time slot were removed from πi↾t. By
induction, we are done.

To conclude, let ε ∈ (0, 1], assume that u0 ∈ U 1−ε
ε
, let t ∈ T , and let i, j, j′ ∈ N . Since

ui ∈ U 1−ε
ε
, thus

1− ui({1}) = ui({2, 3, ...})

≥ 1− ε

ε
ui({1}),
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so 1 ≥ ui({1})
ε

, so ε ≥ ui({1}). If πj↾t = ∅, then n ≥ 2, so u0 ∈ U1∩UM and thus u0 assigns
positive utility to each date; thus by definition of the Fudenberg-Maskin procedure,
we have that πj′↾t includes at most one time slot, so

ui(πj↾t) ≥ ε− ε

≥ ui({1})− ε

≥ ui(πj′↾t)− ε.

If πj↾t ̸= ∅, then there is t′ ∈ πj↾t, so since π↾t is EFX we have

ui(πj↾t) = uj(πj↾t)

≥ uj(πj′↾t\{t′})
= ui(πj′↾t)− ui({t′})
≥ ui(πj′↾t)− ui({1})
≥ ui(πj′↾t)− ε.

Thus in both cases, ui(πj↾t) ≥ ui(πj′↾t) − ε. Since i, j, j′ ∈ N were arbitrary, thus each
agent measures any two partial schedules at time t to be within ε of one another, so π↾t
is ε-perfectly equitable. Since t ∈ T was arbitrary, thus π is eternally ε-perfectly equitable,
as desired. ■

Appendix 4

In this appendix, we provide a detailed explanation of Example 2.

Example 2: The Iterative Greedy Algorithm does not guarantee proportionality.
Let N = {1, 2}, and consider the schedule

S∗ = {1} ∪ {5x+ 1, 5x+ 2, 5x+ 4}x∈{1,2,...}.

Thus S∗ is constructed by dividing T into groups of five time slots; taking only the first
time slot from the first group; then taking the first, second, and fourth time slots from
every group thereafter. An agent with discount factor δ measures S∗ to be worth 1

2
if and

only if

(1− δ) +

(
δ + δ2 + δ4

δ + δ2 + δ3 + δ4 + δ5

)
δ5 =

1

2
.

This equation has two solutions in (0, 1), approximately 0.536 and approximately 0.923.15

Let δ∗ be the smaller of these, and let u1 be geometric discounting with δ∗.
We claim that S∗ = G1(

1
2
|T ). By construction, u1(S

∗) = 1
2
; thus it suffices to show

that for each t ∈ T\S∗,

u1({t′ ∈ S∗|t′ < t}) + u1({t}) >
1

2
= u1({t′ ∈ S∗|t′ < t}) + u1({t′ ∈ S∗|t′ > t}),

15To simplify verification, for δ > 0, this equation can be re-written 2δ8+2δ6−δ4−δ3−δ2−δ+1 = 0.
We remark that by the Rule of Signs (Descartes, 1637; see for example Wang, 2004 and Komornik,
2006 for short proofs), since the sequence of coefficients (2, 2,−1,−1,−1,−1, 1) changes sign twice, this
equation has at most two positive real-valued solutions, and thus the two solutions in (0, 1) are in fact
the only positive solutions.
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or equivalently, u1({t}) > u1({t′ ∈ S∗|t′ > t}). If this inequality holds for t = 5,
then it holds for t ∈ {2, 3, 4}; thus we need only prove it holds for t ∈ {5x}x∈{1,2,...}
and t ∈ {5x + 3}x∈{1,2,...}. A discount factor δ satisfies (i) the desired inequality for all
t ∈ {5x}x∈{1,2,...}, and (ii) the desired inequality for all t ∈ {5x + 3}x∈{1,2,...}, if and only
if, respectively,

(i’) 1− δ >

(
δ + δ2 + δ4

δ + δ2 + δ3 + δ4 + δ5

)
δ, and

(ii’) 1− δ >

(
δ + δ3 + δ4

δ + δ2 + δ3 + δ4 + δ5

)
δ.

It is easy to see that if δ ∈ (0, 1), then (i’) implies (ii’). Moreover, if δ ∈ (0, 1), then
(i’) is satisfied if and only if δ is less than approximately 0.552.16 Since δ∗ ≈ 0.536, thus
S∗ = G1(

1
2
|T ), as claimed.

It is easy to see that a sufficiently patient agent values S∗ to be approximately 0.6 > 1
2
.

To be concrete, if agent 2 has discount factor 0.95, then u2(S
∗) ≈ 0.530 > 1

2
.

Altogether, then, with discount factors δ1 = δ∗ and δ2 = 0.95, if 1 uses the Greedy
Algorithm to construct his own schedule, then the resulting allocation is not propor-
tional. If instead 2 uses the Greedy Algorithm to construct his own schedule, then
he will take the first two time slots, which 1 values more than 1

2
, so again the resulting

allocation is not proportional.

Appendix 5

In this appendix, we prove Theorem 4.

Theorem 4 (Restated): Fix an environment. If n = 2, then for the domain U1 ∩ UG,
there is no strategy-proof mechanism that always selects proportional allocations.

Proof: Assume, by way of contradiction, that M is a strategy-proof mechanism that
always selects proportional allocations. To ease notation, let the agents directly report
their discount factors, so that they together report (δ1, δ2) ∈ [0.5, 1)N with associated
utility functions (uδ1 , uδ2).

First, if (δ1, δ2) = (0.5, 0.5), then by proportionality, one agent receives {1} and the
other receives {2, 3, ...}. Assume, without loss of generality, that M(0.5, 0.5) assigns {1}
to 1 and {2, 3, ...} to 2.

Second, define π ≡ M(0.5, 0.52). We cannot have π2 ⊇ {1}; else π1 ⊆ {2, 3, ...} and
by proportionality we have u0.5(π1) ≥ 1

2
, so π1 = {2, 3, ...}, so u0.52(π2) = u0.52({1}) < 1

2
,

contradicting proportionality. Thus π1 ⊇ {1}, so π2 ⊆ {2, 3, ...}. We cannot have π2 ⊊
{2, 3, ...}; else

u0.52(M2(0.5, 0.5)) = u0.52({2, 3, ...})
> u0.52(π2)

= u0.52(M2(0.5, 0.52)),

contradicting strategy-proofness. Altogether, then, π2 = {2, 3, ...} and π1 = {1}.
16To simplify verification, for δ > 0, (i’) can be re-written δ5+δ4+δ2+δ < 1 and (ii’) can be re-written

δ5 + δ4 + δ3 + δ < 1.
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Finally, define π′ ≡ M(0.51, 0.52). We cannot have π′
1 ⊇ {1}; else by proportionality

we have π′
1 ⊋ {1}, so by the previous paragraph we have

u0.5(M1(0.51, 0.52)) = u0.5(π
′
1)

> u0.5({1})
= u0.5(M1(0.5, 0.52)),

contradicting strategy-proofness. Then π′
2 ⊇ {1} and π′

1 ⊆ {2, 3, ...}. We cannot have
π′
2 ∩ {2, 3, 4, 5, 6} ≠ ∅; else

u0.51(π
′
2) ≥ u0.51({1, 6})

≈ 0.5069,

so u0.51(π
′
1) <

1
2
, contradicting proportionality. But then π′

1 ⊇ {2, 3, 4, 5, 6}, so

u0.52(π
′
1) ≥ u0.52({2, 3, 4, 5, 6})

≈ 0.5002,

so u0.52(π
′
2) <

1
2
, contradicting proportionality. ■

Appendix 6

In this appendix, we prove Theorem 5.

Theorem 5 (Restated): Fix an environment. If n = 2, then for the domain U1 ∩ UM,
there is no myopic mechanism that always selects proportional allocations.

Proof: Assume, by way of contradiction, that M is a myopic mechanism that always
selects proportional allocations. Because M is myopic, it always assigns date 1 to the
same agent whenever both agents assign utility 0.39 to this date; assume, without loss of
generality, that in this case M assigns date 1 to agent 1.

Let u1 ∈ U1 ∩ UM be such that (0.39, 0.3, 0.11, 0.1) gives the utilities of the first four
dates and thereafter u1 iteratively assigns one-half of the remaining utility to the next
date. Similarly, let u2 ∈ U1 ∩ UM be such that (0.39, 0.13, 0.13, 0.13) gives the utilities of
the first four dates and thereafter u2 iteratively assigns one-half of the remaining utility
to the next date. Finally, define π ≡ M(u1, u2). By assumption, π1 ⊇ {1}. We cannot
have π1 ∩ {2, 3, 4} ≠ ∅; else

u2(π1) ≥ u2({1, 4})
= 0.52,

so u2(π2) <
1
2
, contradicting proportionality. But then π1 ∩ {2, 3, 4} = ∅, so

u1(π1) ≤ u1({1} ∪ {5, 6, ...})
= 0.49,

so u1(π1) <
1
2
, contradicting proportionality. ■
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Appendix 7

In this appendix, we prove Theorem 6. Before proceeding, we remark that formally, the
Iterative Apportionment procedure involves some arbitrary tie-breaking, and we
prove that the resulting allocation is proportional regardless of how this is done.

Theorem 6 (Restated): Fix an economy. If (i) n = 3, and (ii) for each i ∈ N , ui ∈ U2,
then the Iterative Apportionment procedure constructs a proportional allocation.

Proof: Assume the hypotheses. In the Iterative Apportionment procedure, the
three agents fill a first basket and assign its contents S1 to an agent i1, then the remaining
two agents fill a second basket and assign its contents S2 to an agent i2, and finally the
last agent receives the rest of the time slots.

Step 1: Construct S1 ∈ S and choose i1 ∈ N such that (i) ui1(S1) ≥ 1
3
, and (ii) for each

j ∈ N\{i1}, uj(S1) ≤ 1
3
.

The agents fill the first basket by considering the time slots in sequence. At each time
slot t, each agent places a flag in the basket if and only if he measures the value of the
basket with t to exceed 1

3
. If there are no flags, then t is added to the basket and the

agents move to the next time slot. If there is one flag, then let i1 be the agent who placed
the flag, let S1 denote the contents of the basket with t, and assign S1 to i1; in this case
we are clearly done with Step 1. If there are two or three flags, then t is skipped and the
agents move to the next time slot.

If there is no time slot with one flag, then let S1 denote the first basket’s limit schedule,
or the union of its schedules across all time periods. In this case, we claim there is i1 ∈ N
such that ui1(S1) =

1
3
. Indeed, by construction, for each j ∈ N , uj(S1) ≤ 1

3
< 1 = uj(T ),

so there is at least one time slot for which an agent places a flag. Assume, by way of
contradiction, that there is a maximum t with a flag, and let i be an agent who places a
flag for t. Since ui ∈ U1, thus

ui(S1) = ui({t′ ∈ S1|t′ < t}) + ui({t+ 1, t+ 2, ...})
≥ ui({t′ ∈ S1|t′ < t}) + ui({t})

>
1

3
,

contradicting ui(S1) ≤ 1
3
. Thus there is an infinite collection of flags, so there is at least

one agent who places an infinite collection of flags; let i1 be any such agent, and let T1

denote the infinite collection of time slots for which i1 places a flag. For each t ∈ T1,

ui1(S1) + ui1({t}) ≥ ui1({t′ ∈ S1|t′ < t}) + ui1({t})

>
1

3
,

so ui1({t}) > 1
3
− ui1(S1). Since limt∈T1 ui1({t}) = 0, thus ui1(S1) ≥ 1

3
, so ui1(S1) =

1
3
, as

desired.

Step 2: Construct S2 ∈ S and choose i2 ∈ N such that (i) ui2(S2) ≥ 1
3
, and (ii) for the

unique j ∈ N\{i1, i2}, uj(S2) ≤ 1
3
.
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Define N ′ ≡ N\{i1}. The two agents in N ′ fill a second basket to construct S2

using the same procedure that was used to construct S1; we provide the details to avoid
ambiguity. The two remaining agents fill the second basket by considering the time slots
in T\S1 in sequence. At each time slot t, each agent places a flag in the basket if and only
if he measures the value of the basket with t to exceed 1

3
. If there are no flags, then t is

added to the basket and the agents move to the next time slot. If there is one flag, then
let i2 be the agent who placed the flag, let S2 denote the contents of the basket with t,
and assign S2 to i2; in this case we are clearly done with Step 2. If there are two flags,
then t is skipped and the agents move to the next time slot.

If there is no time slot with one flag, then let S2 denote the second basket’s limit
schedule, or the union of its schedules across all time periods. In this case, we claim
there is i2 ∈ N ′ such that ui2(S2) = 1

3
. Indeed, by construction, for each j ∈ N ′,

uj(S2) ≤ 1
3
< 2

3
≤ uj(T\S1), so there is at least one time slot for which an agent places

a flag. Assume, by way of contradiction, that there is a maximum t with a flag. Let
N1 ⊆ N denote the agents who placed a flag for t during the construction of S1, and let
N2 ⊆ N ′ ⊆ N denote the agents who placed a flag for t during the construction of S2.
Since t ∈ T\S1, thus |N1| ≥ 2, and by assumption, |N2| = 2; since |N | = 3, thus there is
i ∈ N1 ∩N2. Since i ∈ N2, thus i ̸= i1, so by Step 1 we have ui(S1) ≤ 1

3
, so since i ∈ N1

we have

ui({t′ ∈ S1|t′ < t}) + ui({t}) >
1

3
≥ ui(S1)

= ui({t′ ∈ S1|t′ < t}) + ui({t′ ∈ S1|t′ > t}),

and thus ui({t}) > ui({t′ ∈ S1|t′ > t}). Moreover, we have ui ∈ U2, so altogether

ui({t+ 1, t+ 2, ...}\S1) = ui({t+ 1, t+ 2, ...})− ui({t′ ∈ S1|t′ > t})
> 2ui({t})− ui({t})
= ui({t}).

But then

ui(S2) = ui({t′ ∈ S2|t′ < t}) + ui({t+ 1, t+ 2, ...}\S1)

> ui({t′ ∈ S2|t′ < t}) + ui({t})

>
1

3
,

contradicting ui(S2) ≤ 1
3
. Thus both agents in N ′ place an infinite collection of flags;

let i2 be either of these agents, and let T2 denote the infinite collection of time slots for
which i2 places a flag. For each t ∈ T2,

ui2(S2) + ui2({t}) ≥ ui2({t′ ∈ S2|t′ < t}) + ui2({t})

>
1

3
,

so ui2({t}) > 1
3
− ui2(S2). Since limt∈T2 ui2({t}) = 0, thus ui2(S2) ≥ 1

3
, so ui2(S2) =

1
3
, as

desired.

Step 3: Conclude.
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Let i3 denote the unique member of N\{i1, i2}, and let π be the allocation such that
πi1 = S1, πi2 = S2, and πi3 = T\(πi1 ∪ πi2). By Step 1, ui1(πi1) ≥ 1

3
and ui3(πi1) ≤ 1

3
.

By Step 2, ui2(πi2) ≥ 1
3
and ui3(πi2) ≤ 1

3
. Thus ui3(πi3) ≥ 1

3
, so π is proportional, as

desired. ■

Appendix 8

In this appendix, we prove Theorem 7. Before proceeding, we remark that formally, the
Simultaneous Apportionment procedure involves some arbitrary tie-breaking, and
we prove that the resulting allocation is proportional regardless of how this is done.

Theorem 7 (Restated): Fix an economy. If (i) n = 3, and (ii) for each i ∈ N ,
ui ∈ U2, then the Simultaneous Apportionment procedure constructs a proportional
allocation.

Proof: Assume the hypotheses. In the Simultaneous Apportionment procedure,
the three agents begin to fill three baskets together, and there are three cases:

• The agents exhaust the time slots and the baskets are assigned arbitrarily.

• At some point one of the agents takes a basket that nobody else values more than 1
3
,

then the remaining agents continue with the remaining baskets.

• At some point one of the agents takes a basket that someone else values more
than 1

3
, and the rest of the allocation is immediately determined with a procedure

involving Divide and Choose.

Step 1: The three agents fill the three baskets, possibly stopping after time slot t1 when
basket S1 is assigned to agent i1, who values S1 at least 1

3
.

To begin, there are three empty baskets. The time slots are assigned to baskets in
sequence, and when assigning time slot t, agent i places a flag in basket j if and only if
he believes the value of basket j would exceed 1

3
should it receive t. Time slot t is then

assigned to any basket with a minimal number of flags. If this basket has zero flags, then
the agents continue to the next time slot. If this basket has at least one flag, then let i1
be any agent who placed a flag in this basket, let S1 denote the contents of this basket
with t, and let t1 denote this time slot; in this case we are clearly done with Step 1.

If every time slot is placed in a basket with zero flags, then by construction, all agents
agree that each basket is worth no more than 1

3
, so they agree that each basket is worth 1

3
,

so the baskets may be arbitrarily assigned to the agents to form a proportional allocation.

Step 2: If the three agents stopped filling the three baskets at some t1, then complete
the allocation.

By construction, the basket that was assigned to i1 had at least one flag at t1. We
first claim that no agent placed three flags at t1. Indeed, assume by way of contradiction
that some agent i placed three flags at t1, and let A, B, and C denote the contents of
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the three baskets before t1 is assigned. Then

ui({1, 2, ..., t1 − 1}) + 3ui({t1}) =
∑

S∈{A,B,C}

ui(S ∪ {t1})

>
1

3
+

1

3
+

1

3
= 1,

so 3ui({t1}) > ui(t1) + ui({t1 + 1, t1 + 2, ...}), contradicting ui ∈ U2.
Since (i) each agent placed at most two flags at t1 and (ii) the basket assigned to i1

had the minimal number of flags at t1, thus the basket assigned to i1 either had one flag
or two flags at t1. Moreover, if this basket had two flags at t1, then each agent placed
two flags at t1.

Case 1: The basket assigned to i1 had one flag at t1.

In this case, the two agents continue as before with the remaining two baskets; we
provide the details to avoid ambiguity. The remaining time slots are assigned to the
remaining baskets in sequence, and when assigning time slot t, agent i places a flag in
basket j if and only if he believes the value of j would exceed 1

3
should it receive t. Time

slot t is then assigned to any basket with a minimal number of flags. If this basket has
zero flags, then the agents continue to the next time slot. If this basket has at least one
flag, then let i2 be any agent who placed a flag in this basket, let S2 denote the contents
of this basket with t, and let t2 denote this time slot.

If every time slot is placed in a basket with zero flags, then by construction, the
remaining agents agree that each remaining basket is worth no more than 1

3
. Moreover,

since the basket assigned to i1 had one flag at t1, thus the remaining agents agree that
the remaining baskets are together worth 2

3
. Altogether, then, the remaining agents

agree that each remaining basket is worth 1
3
, so the remaining baskets may be arbitrarily

assigned to the remaining agents to form a proportional allocation.
If t2 is placed in a basket with at least one flag, then let i3 be the unique member of

N\{i1, i2} and let π be the allocation such that πi1 = S1, πi2 = S2, and πi3 = T\(πi1∪πi2).
If the basket assigned to i2 has one flag at t2, then π is clearly proportional. If the basket
assigned to i2 has two flags at t2, then both agents placed two flags at t2. Let A denote
the contents of the basket without t2 right after t2 is assigned; since ui3 ∈ U1 and since i3
placed a flag in both baskets at t2, thus

ui3(πi3) = ui3(A) + ui3({t2 + 1, t2 + 2, ...})
≥ ui3(A) + ui3({t2})

>
1

3
,

so π is proportional.

Case 2: The basket assigned to i1 had two flags at t1, and each agent placed two flags
at t1.

In this case, each basket received two flags at t1. Let i2 be the agent other than i1 who
placed a flag in the assigned basket at t1, and let S2 denote the contents of the remaining
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basket that received a flag from i2 at t1. Let i3 denote the unique member of N\{i1, i2},
and let S3 denote the contents of the remaining basket that did not receive a flag from
i2 at t1. Necessarily, i3 placed a flag in the basket of S3 at t1.

Let i2 divide the remaining time slots into two parts H and H ′ he considers to have
equal value using the Greedy Algorithm; formally, define

H ≡ Gi2(
1

2
ui2({t1 + 1, t1 + 2, ...})|{t1 + 1, t1 + 2, ...}), and

H ′ ≡ {t1 + 1, t1 + 2, ...}\H.

By Proposition 1, i2 indeed considers H and H ′ to have equal value. Let H3 denote a
member of {H,H ′} that i3 considers most valuable, and let H2 denote the other member
of {H,H ′}.

Let π be the allocation such that πi1 = S1, πi2 = S2 ∪ H2, and πi3 = S3 ∪ H3. For
each j ∈ {i2, i3}, since uj ∈ U2 and since j placed a flag in the basket for Sj at t1, thus

uj(πj) = uj(Sj) + uj(Hj)

≥ uj(Sj) +
1

2
uj({t1 + 1, t1 + 2, ...})

≥ uj(Sj) + uj({t1})

>
1

3
,

so π is proportional, as desired. ■

Appendix 9

In this appendix, we prove Theorem 8.

Theorem 8 (Restated): Fix an economy and let ε ∈ (0, 1]. If for each i ∈ N , ui ∈ UM,
then the Round-Robin procedure constructs an allocation that is EF1 and eternally
EF1. If, moreover, for each i ∈ N we have ui ∈ U 1−ε

ε
, then this allocation is moreover

ε-perfectly equitable and eternally ε-perfectly equitable.

Proof: Assume the hypotheses and let π be the Round-Robin allocation. Moreover,
let ε ∈ (0, 1], let i, j, j′ ∈ N , and let t ∈ T .

First, we claim that (i) ui(πj) ≥ ui(πj′\{j′}), and (ii) ui(πj↾t) ≥ ui(πj′↾t\{j′}).
Indeed, by construction, (i) both πj and πj′ are infinite, and moreover (ii) for each
k ∈ {1, 2, ...}, the kth-earliest member of πj is earlier than the kth-earliest member
of πj′\{j′}. Since ui ∈ UM, thus we have our claim, as desired.

Second, we claim that if for each i ∈ N we have ui ∈ U 1−ε
ε
, then (i) ui(πj) ≥ ui(πj′)−ε,

and (ii) ui(πj↾t) ≥ ui(πj′↾t) − ε. Indeed, since ui ∈ U 1−ε
ε
, thus as argued in the proof of

Theorem 2 we have ε ≥ ui({1}), so since ui ∈ UM we have ε ≥ ui({1}) ≥ ui({j′}). The
desired claim follows immediately from the first claim.

To conclude, since i, j, j′ ∈ N and t ∈ T were arbitrary, thus (i) by the first claim,
we have that π is EF1 and eternally EF1, and (ii) by the second claim, we have that if
for each i ∈ N we have ui ∈ U 1−ε

ε
, then π is ε-perfectly equitable and eternally ε-perfectly

equitable. Since ε ∈ (0, 1] was arbitrary, we are done. ■
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Appendix 10

In this appendix, we prove Theorem 10. Before proceeding, we remark that formally,
the Envy Graph procedure involves some arbitrary tie-breaking, and we prove that the
resulting allocation is EFX regardless of how this is done.

Theorem 10 (Restated): Fix an economy. If for each i ∈ N , ui ∈ UM, then the Envy
Graph procedure constructs an allocation that is EFX (and thus EF1).

Proof: Let π be the Envy Graph allocation. For each t ∈ T and each i ∈ N ,
let πt

i denote the schedule in the basket held by i immediately after t is assigned; by
construction, ui(π

1
i ) ≤ ui(π

2
i ) ≤ ... ≤ ui(πi). Define T ′ ≡ {t ∈ T |for each i ∈ N, πt

i ⊆ πi};
by construction, T ′ is infinite.

Let i, j ∈ N . Since each agent’s utility function belongs to UM, thus the agents share
a common ranking of the time slots, so as argued by Plaut and Roughgarden (2020) in
the proof of their Theorem 6.2, for each t ∈ T we have ui(π

t
i) ≥ ui(π

t
j\{maxπt

j}). If πj is
finite, then there is t∗ ≥ maxπj such that πt∗

j = πj, and thus

ui(πi) ≥ ui(π
t∗

i )

≥ ui(π
t∗

j \{maxπt∗

j })
= ui(πj\{maxπj}),

from which the desired conclusion directly follows. If πj is infinite, then

ui(πi) = lim
t∈T ′

ui(π
t
i)

≥ lim
t∈T ′

ui(π
t
j\{maxπt

j})

= lim
t∈T ′

ui(π
t
j)− lim

t∈T ′
ui({maxπt

j})

= ui(πj)− 0,

from which the desired conclusion directly follows. ■
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Bilò, Vittorio, Ioannis Caragiannis, Michele Flammini, Ayumi Igarashi, Gianpiero
Monaco, Dominik Peters, Cosimo Vinci, and William Zwicker (2022). “Almost envy-free
allocations with connected bundles.” Games and Economic Behavior 131, 197-221.

Brams, Steven and Mehmet Ismail (2018). “Making the Rules of Sports Fairer.” SIAM Review 60,
181-202.

Brams, Steven, Mehmet Ismail, and D. Marc Kilgour (2023). “Fairer Shootouts in Soccer: The
m-n Rule.” Working paper.

Brams, Steven, Mehmet Ismail, D. Marc Kilgour, and Walter Stromquist (2018). “Catch-
Up: A Rule That Makes Service Sports More Competitive.” The American Mathematical Monthly
125, 771-796.

Brams, Steven and Alan Taylor (1995). “An Envy-Free Cake Division Protocol.” The American
Mathematical Monthly 102, 9-18.

Brams, Steven and Alan Taylor (2000). The Win-Win Solution: Guaranteeing Fair Shares to
Everybody. New York, New York: W.W. Norton.

Brams, Steven, Alan Taylor, and William Zwicker (1995). “Old and new moving-knife
schemes.” The Mathematical Intelligencer 7, 30-35.

Bu, Xiaolin, Jiaxin Song, and Biaoshuai Tao (2023). “On existence of truthful fair cake cutting
mechanisms.” Artificial Intelligence 319, Article 103904.

Budish, Eric (2011). “The Combinatorial Assignment Problem: Approximate Competitive Equilibrium
form Equal Incomes.” Journal of Political Economy 119, 1061-1103.

30



Caragiannis, Ioannis, Christos Kaklamanis, Panagiotis Kanellopoulos, and Maria Ky-
ropoulou (2009). “On Low-Envy Truthful Allocations.” Algorithmic Decision Theory: First Inter-
national Conference (ADT 2009), 111-119.

Caragiannis, Ioannis, David Kurokawa, Hervé Moulin, Ariel Procaccia, Nisarg Shah, and
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Rényi, Alfréd (1957). “Representations for real numbers and their ergodic properties.” Acta Mathe-
matica Hungarica 8, 477-493.

Rubinstein, Ariel (1982). “Perfect Equilibrium in a Bargaining Model.” Econometrica 50, 97-109.

Salonen, Hannu and Hannu Vartiainen (2008). “Valuating payoff streams under unequal discount
factors.” Economics Letters 99, 595-598.

Savage, Leonard (1954). The Foundations of Statistics. Wiley, NY: Dover Publications.

Schummer, James (1997). “Strategy-proofness versus efficiency on restricted domains of exchange
economies.” Social Choice and Welfare 14, 47-56.

Sorin, Sylvain (1986). “On Repeated Games with Complete Information.” Mathematics of Operations
Research 11, 147-160.

Steinhaus, Hugo (1948). “The problem of fair division.” Econometrica 16, 101-104.

Steinhaus, Hugo (1949). “Sur la division pragmatique.” Econometrica 17 (Supplement), 315-319.

Stromquist, Walter (1980). “How to cut a cake fairly.” The American Mathematical Monthly 87,
640-644. Addendum (1981), volume 88, 613-614.

Sugaya, Takuo (2015). “Characterizing the limit set of perfect and public equilibrium payoffs with
unequal discounting.” Theoretical Economics 10, 691-717.

Suksumpong, Warut (2019). “Fairly allocating contiguous blocks of indivisible items.” Discrete Applied
Mathematics 260, 227-236.

Thomson, William (2007). “Children crying at birthday parties. Why?” Economic Theory 31, 501-521.

Tinbergen, Jan (1946). Redelijke Inkomensverdeling [Reasonable Income, in Dutch]. Haarlem, the
Netherlands: De Gulden Pers.

Varian, Hal (1974). “Equity, envy and efficiency.” Journal of Economic Theory 29, 217-244.

Villegas, Cesareo (1964). “On Quantitative Probability σ-Algebras.” Annals of Mathematical Statis-
tics 35, 1787-1796.

Wang, Xiaoshen (2004). “A Simple Proof of Descartes’s Rule of Signs.” American Mathematical
Monthly 111, 525-526.

Weitzman, Martin (2001). “Gamma Discounting.” American Economic Review 91, 260-271.

33


	Introduction
	Overview
	Related literature

	Model
	Environments and economies
	Exact fairness and utility function domains
	Approximate fairness and eternal approximate fairness
	Properties for mechanisms

	Results
	The single-agent technique
	Identical preferences
	Two agents
	Three agents
	The general case

	Discussion
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7
	Appendix 8
	Appendix 9
	Appendix 10

