Introduction to Flowcytometry

What is flowcytometry Creating order in the Chaos

URSUS WEHRLI

Leukocytes

What is flowcytometry

Some history

- 1934 Photo-detection of red blood cells: Moldavan
- 1950 Measuring cells (size) based on electrical condutivity : Coulter
- **1953** Development of laminair flows: **Crosland Taylor**
- **1965** Electrostatic charges breaks-up a stream in droplets (inktjet printing): **Sweet**
- **1967** IBM developed a rapid cell spectrometer with arc lamp and a computer: **Kamentsky**
- **1972** Fluorescence Activated Cell Sorter: Herzenberg
- 1981 First benchtop analyzer
- 1985 3 colors available

Some history Len Herzenberg

Some history What's now?

What is flow cytometry

- Flow : cells in motion
- Cyto: cell
- Metry: measure
- Measuring multiple properties of single cells in a fluid stream
- Gives us the ability to analyze many properties of many cells in over 1000 cells per second
- You need single cells

What is flow cytometry

Single cell

suspension

Fluorescent labelled antibodies

Wash away unbound antibody a measure on cytometer

Flowcytometric process

Fluidics

Flowrate

e,

125

, (x 1,000) 25

50

100

125 (x 1,000)

75

PE/CY7-A

Hydrodynamics focussing

æ,

25

50

75 PE/CY7-A 100

3 characteristics are measured by the optics:

Forward scatter
 Side scatter
 fluorescence

Optics Forward / side scatter

Forward / side scatter

Doublet exclusion

It is important to remember to turn on the W and H parameter before collecting data, otherwise it's not included in the FCS data file.

Fluorescence

Absorption of energy from excitated light by a photoreactive chemical (fluorchrome) which then emmites the energy in a higher wavelenght of light

Fluorescence in flowcytometry

Excitation

Emmision

LASERS

DETECTORS

Detectors PMT: Photo Multiplyer Tube

Filtersets in front of detectors

LP: transmission of photons above a specified wavelength SP: transmission of photons below a specified wavelength

BP: transmission of photons that have wavelengths within a narrow range

Filtersets in front of detectors

780/60 BP filter

Transmission of photons in the range of 750 to 810 nm

Detectors

BV421

Detectors

Blue Laser 488nm

Which fluorchromes can we detect at MUMC+? -> depends on configuration of the machine:

BD FACS Canto

- 3 laser
- 8 colours

.aser	PMT	LP	BP	Fluorchromes
88	А	735	780/60	PE-Cy7
	В	685	710/50	PE-Cy5.5
				PerCp
	D	556	585/42	PE
	E	520	530/30	FITC
				A488
i33	А	735	780/60	APC-Cy7
				APC-H7
	В	-	660/20	APC
				A647
05	А	750	510/50	V500
				BV510
	В	-	450/40	Pacific blue
				Hoechst
				Dapi
				BV421

BD Fusion sorter

- 4 lasers
- 16 colours

Laser	PMT	LP	BP	Fluorchromes
488	А	655	695/40	PerCp-Cy5.5
				PerCp
	В	502	530/30	FITC
	С	-	488/10	SSC
561	А	735	780/60	PE-Cy7
	В	685	710/50	PE-Cy5.5
	С	630	670/14	PE-Cy5
	D	600	610/20	PE-Cy594
				PI
				mCherry.
				PE-TxRed
	E	-	582/15	PE
				DsRed
640	А	755	780/60	APC-Cy7
				APC-H7
	В	-	670/30	APC
				A647
	С	690	730/45	Alexa700
405	А	750	780/60	BV786
	В	690	710/50	BV711
	С	630	660/20	BV650
	D	595	610/20	BV605
	E	505	525/50	BV480
				BV510
				V500
	F	-	450/40	BV421
				V450
				Pacific Blue
				eFluor450

Optics Cytek Aurora: full spectrum flowcytometry

UV laser (355): 7 channels
Violet laser (405): 18 channels
Red laser (635): 6 channels
Blue laser (488): 7 channels
38 channels in total

Conventional versus full spectrum

Conventional:

Optics Conventional versus full spectrum

Optics Conventional versus full spectrum

Optics Compensation Conventional:

Optics Compensation Conventional:

How do we do compensation:

Applying unstained and a single stains to the machine

Full stain: CD3 FITC CD19 PE CD56 APC

Compensation controles:

- 1. Unstained
- 2. Only CD3 FITC stained
- 3. Only CD19 PE stained
- 4. Only CD56 APC stained

Optics Compensation Conventional:

Spillover matrix of available fluorochromes on Canto II (4-2-2)

	FITC	PE	PerCP	PE-Cy7	APC	APC-H7	BV510	BV421
FITC		18.7	2.1	0	0	0	0	0
PE	0.6		14	3.5	0	0	0	0
PerCP	0	0		9.8	11.6	3.6	0	0
PE-Cy7	0	4.3	4.1		0	2.8	0	0
APC	0	0	1.1	0		14.2	0	0
APC-H7	0	0	0	1.2	0.9		0	0
BV510/ V500	1.8/ 2.6	0	0	0	0	0		1.8/ 0.3
BV421	0	0	0	0	0	0	1.6	

Example of Spillover Values on BD FACSCanto II (4-2-2): PMT-V setting by CS&T

Avoid combination on the same cell (if not possible: FMO Control necessary)

Make sure that the "Troublemaker" is lower expressed than the other (FMO Control advisable) Typically no/low effects on resolution (FMO Control unnecessary)

Optics compensation 3 rules of compensation:

- 1. The control must be at least as bright as the experimental sample the compensation will be applied to.
- 2. The backgrounds of the positive and negative samples must be identical.
 - Use unstained cells for compensations stained on cells and negative beads for bead compo. Because the spill-over is compensation based on the mean of the negative population
- The control must match the experimental fluorochrome. This means the tube must be acquired at the same voltage and the exact same fluorochrome has been used
 - So FITC is compensated with FITC and not Alexa488. Tandem-dyes need lot specific compensation.

compensation

Optics Fluorchromes

- **G** Fluorescent proteins
 - Green fluorescent protein (GFP), YFP, RFP
 - PE, APC, PerCpD
- □ Synthetic small molecules
 - Given FITC / Cy5
- Polymer dyes
 - Briljant Violet dyes (BV421, BV510, etc)
- Tandem conjugates
 - D PE-Cy7, APC-Cy7, Perp-Cy5.5

Optics Tandem conjugates

Optics Tandem conjugates

- Compensation for tandem dyes can vary: require experiment-specific compensation
- Tandem dye degradation:
 - In bottle
 - On stained cells
- Aggravated by exposure to:
 - Light
 - Elevated temperature
 - Formaldehyde based fixation

Optics Fluorchromes

	Reagent	Clone	Filter	Stain Index
Ctaining index	PE	RPA-T4	575/26	305
Staining index	APC'	RPA-T4	660/20	263
	PE-CyTM52	RPA-T4	695/40	198
$\downarrow VV_1$	Alexa Fluor® 6471	RPA-T4	660/20	184
14/	PE-CyTM7	RPA-T4	780/60	122
$\checkmark \lor \lor$	PerCP-Cy™5.5 ²	RPA-T4	695/40	99
A	Alexa Fluor® 488 ³	RPA-T4	530/30	68
	BD Horizon™ V450 ⁵	RPA-T4	450/50	65
	Alexa Fluor® 700	RPA-T4	720/40	64
	Pacific Blue™.5	RPA-T4	450/50	63
	FITC ³	RPA-T4	530/30	43
	AmCyan ⁶	RPA-T4	525/50	37
	APC-Cy7 ⁴	RPA-T4	780/60	36
	PerCP ²	RPA-T4	695/40	30
Signal width	BD Horizon™ V500 ⁶	RPA-T4	525/50	27
	BD APC-H74	RPA-T4	780/60	25

Signal height

Optics Fluorchromes

Electronics

Conversion of light into data

Data display and gating Which plots do we have?

- Univariant: Histogram
- Bivariant: Dotplot
- ☐ Higher order plots: 3D-plots, SPADE trees, etc

Data display and gating Which plots do we have?

Linear scale: light scatter measurement where particle differ subtly in signal intensity
 Log scale: fluorescence measurment where particles differ quite starkly in signal (exception: cell cycle)

Fluorescence intensity

Fluorescence intensity

Be aware:

- You cannot see the relationship between two populations
- You can miss sub-populations that have similar values in one parameter
- You can see false positive artifacts as real signals

Data display and gating Dot plot

Data display and gating Dot plot

Contourplot

Denstity plot

Data display and gating Higher order plots

Cluster-analysis plots (high dimensional)

3D-plot

Data display and gating Higher order plots

"Authentic" dotplot CD19+TCRv5 88 163 CD3 CD3 CD19+TCRvð CD8+smlaD co27 5D27 CD45RA CD45RA CD4+smlgM D8+smlg[CD27 5027 CD4+smlgM CD45RA CD4+smlgM

Automatic Population Selection

Data display and gating Biexponential display

Changing the scaling does not change the values, just the display of the data

Data display and gating Fluidics artefacts

Fluidics problems during acquisition cause artifacts in the data

To visualize:

look at data vs time

Then gate out the bad data

ZosiaMaciorowski

Data display and gating Basic statistics

Frequency

Tube: 1			
Population	#Events	%Parent	%Total
All Events	34,160	####	100.0
i singlets	12,720	37.2	37.2
i life	12,463	98.0	36.5
T	5,490	44.1	16.1
В	1,056	8.5	3.1

Data display and gating Basic statistics

Most flow cytometry data is displayed on a Logarithmic scale – What looks symmetrical is actually skewed!

Data display and gating At the end:

fccf.cdl@mumc.nl erwin.wijnands@mumc.nl

Experimental design

How to perform a flowcytometrie experiment