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1. Preface: aim and background

In 1992 and 1993 two new study programs started at Maastricht University.
Knowledge Engineering (Kennistechnologie) was a joint enterprise of the Department of
Mathematics and Computer Science of the Faculty of General Sciences of the UM and
the Limburgs Universitair Centrum in Diepenbeek, Belgium, which was affiliated with
the University of Leuven. The focus of this program was on operations research and
computer science. Econometrics and Operations Research was a new program within
the Faculty of Economics and Business of Maastricht University, offered mainly by the
Department of Quantitative Economics. The focus of this program was on econometrics,
mathematical economics, and operations research. These were the first programs at
Maastricht University of a strong mathematical nature and together with the Maastricht
Science Program they are, in fact, still the only programs at the UM which can be called
exact according to Dutch terminology.

At that time, the interest in mathematical or applied mathematical study programs in the
Netherlands was not overwhelming and, moreover Maastricht University was not exactly
known as a place which offered such programs, let alone had much of a reputation in
this respect. Not surprisingly, the inflow of students in the two new programs at the
beginning was quite low. The Mathematical Modelling Maastricht (MMM) competition
for high school students was one of the initiatives taken which intended to increase
visibility and to boost the student numbers for both programs.

The set-up of the MMM aimed to reflect two common characteristics of the two study
programs: problem based learning and mathematical modelling. The former is reflected
by the fact that from the beginning on participants in the MMM cooperate in small
groups. The latter appears from the fact that many of the MMM problems require
students to first set up a mathematical model for the problem at hand: in fact, the
problems often look like so-called ‘redactiesommen’ from earlier times.

The MMM started on May 13, 1995, with about 50 participants. The next edition took
place in January 1996, and after that always in January, which was more suitable than
Spring, in view of final high school examinations. After a year with 80 participating
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groups and in total 400 participating students, registrations for the MMM were limited
to 40 groups and 200 students.

Meanwhile, names have changed: the MMM is now organized by the Department of
Data Science and Knowledge Engineering of the Faculty of Science and Engineering and
the Department of Quantitative Economics of the School of Business and Economics.
The two study programs Data Science and Knowledge Engineering and Econometrics
and Operations Research attract much larger numbers of students than 25 years ago:
up to 300 students in total. One of the objectives of the current MMM still is to draw
attention to these two programs, but the marketing aspect has been toned down: the
chief objective is the sheer fun of the event, both for the organizers and the participants.
No doubt, also this special 25th edition of the MMM will be an interesting and cheerful
event.

Hans Peters
Gijs Schoenmakers

We thank everyone who contributed to the MMM competitions in the past 25 years.

This booklet was composed by Karin van den Boorn, Jean Derks, Ralf Peeters, Hans
Peters and Gijs Schoenmakers.

A duck swims in the middle of a circular pond with a menacing cat outside. The cat runs
four times as fast as the duck can swim, but cannot enter the water. Can the duck get to
the border of the pond without the cat being on top of him?



2. Anecdotes

2.1 ‘Is this going to be cool?’

About twenty years ago I participated in MMM. My math teacher had asked me to join
and I remember I wasn’t immediately enthusiastic. It would be on a Saturday, a day I
normally worked. And I thought it wasn’t a very cool thing to do on a weekend. Boy,
was I wrong! My teacher still had a place vacant in the girls team. ‘You are a good
addition’ he encouraged me. The smartest boys of my year had already formed a team.
First place and nothing less was their motto, which they made public to everyone in
school. My concerns were rather ‘Can I actually solve any of those questions?’ and ‘Is
this going to be cool?’. The relaxed attitude of the girls – ‘Just join! It will be fun’ –
convinced me to join.

I liked math. I was good at it. Obviously something my math teacher knew. At the
time I wasn’t that serious about what to do after my last year in high school. Studying
Econometrics had crossed my mind, but it could just as well be something else. I knew
Maastricht university offered an Econometrics program and also something which was
called ‘Problem based learning’. Whatever that may be, it sounded interesting. I signed
up for MMM because it would be a nice day with my friends, but also a little because I
was curious about Maastricht university.

So on a Saturday morning really early, we all gathered at the train station. During the
ride the girls were chatting, excited about the day out. The boys were checking exercises
from an earlier edition of MMM. The contrast couldn’t have been bigger and thinking
back about it, I felt a little disappointed that they were so focused on winning.

When we got to the university, our math teachers were already waiting there for us.
They were exited too: some interesting lectures on math, while we were working on the
assignments. After the introduction in the aula and encouragements from our teachers
it was time to start. Every team was assigned a room number. Our first hurdle: find
our room. After some running back and forth we finally got there. Immediately bags
were turned inside out to gather all snacks and drinks for the day. Then we divided the
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assignments, two people per exercise. The fun part started: We were brainstorming out
loud in a corner of the room, using the blackboard, using paper. I think I was responsible
for solving the question ‘How many colors do you need for a map of the world when no
neighboring countries can have the same color?’. In the last half hour all answers were
put together and as a team we tried to solve the last remaining questions.

The exercises were really interesting and the way we solved them really
inspired and motivated everyone in the team. It felt really good to work like
this.

And after we handed in our answers we were all excited: we had done this together!

Then we had to wait for the results. Our team surprisingly ended somewhere top of the
middle. Not far below the boys team. Against their own expectations, the first place was
apparently not theirs. An anticlimax for them. Luckily their sadness lasted shortly. Our
enthusiasm about the day made for a nice train ride back. And plans were made for a
night out together, boys and girls.

And what happened with me? I went to Maastricht to study Econometrics, followed by
a PhD in game theory. MMM has had some influence on this decision. The way we
tackled problems as a team that day felt really good. The small scale of Econometrics
in Maastricht at the time I studied there, and working in small teams on assignments:
often, studying felt like that day at MMM.

Caroline Berden, Nederlandse Zorgautoriteit

2.2 ‘Vallen we toch buiten de prijzen?’
Het is zaterdag 26 januari 2013 en ik rijd terug naar Schoten (België) met vijf leerlingen.
Ze hebben die dag deelgenomen aan de wiskundecompetitie in Maastricht. Het resultaat
is niet goed: ze eindigden niet als laatste, maar het scheelde niet veel. Is de stemming in
de auto bedrukt? Helemaal niet! De teneur: ‘Volgend jaar komen we terug!’ Het zijn dat
jaar inderdaad allemaal leerlingen van het voorlaatste jaar van het secundair onderwijs
die deelnemen. Ze krijgen het jaar daarna dus nog een kans. En of ze die grijpen!

Tijdens de volgende editie van de Mathematische Modelleercompetitie Maastricht zit
de sfeer van in het begin goed. Er wordt zelfs gezongen in de auto! De wedstrijd
verloopt naar wens: ze voelen dat het goed ging maar hebben over sommige vragen
toch nog wat twijfels. Tijdens de voorstelling van de oplossingen krijgt de ploeg veel
bevestiging over de kwaliteit van hun antwoorden. De proclamatie is spannend, want
de verwachtingen zijn hoog. Wanneer ze niet uit de bus komen bij de bekendmaking
van de derde plaats, is er twijfel tussen ‘Vallen we toch buiten de prijzen?’ en ‘Scoren
we nog hoger?’ Als ook de tweede plaats niet voor hen is, wordt dat gevoel alleen maar
sterker. Het duurt niet lang voor de onzekerheid weggenomen wordt: ze zijn eerst! De
rest van de dag verloopt in triomf! Het hierboven geschetste verloop van de wedstrijd is
atypisch. Meestal neemt onze school deel met een ploeg van laatstejaars, die bijgevolg
maar één keer kunnen inschrijven. Het verhaal begint in oktober, bij het voorstellen van
de competitie in de klas(sen), het aanbieden van een smaakmaker voor de vraagstelling



2.3 ‘An enjoyable experience, despite meagre results’ 9

The 1st prize winning team from Schoten, in 2014

en het enthousiasmeren tot deelname. Als het lukt om een ploeg samen te stellen, komen
we enkele keren samen om wat te oefenen en elkaars sterke en zwakke kanten te leren
kennen. Mijn raad luidt steevast: ‘Wees kritisch voor elkaar maar maak zeker geen
ruzie!’

The results are unpredictable, but that is not a problem. The Maastricht
competition is a nice opportunity to step outside the restricted context of the
school, to get acquainted with totally different mathematical applications
(in another language), and to sharpen the ambition for extensive study.

De resultaten wisselen heel sterk van jaar tot jaar, maar dat is niet erg. De Maastrichtse
competitie vormt een goede gelegenheid om eens buiten de beperkte wereld van de
eigen school te treden, kennis te maken met totaal andere wiskundetoepassingen (in een
andere taal) en de ambitie om hard te studeren wat aan te scherpen. Dat de Universiteit
Maastricht ons die kans biedt, is ondertussen goed bekend in onze school en resulteerde
vorig jaar in de eerste oud-leerling die besliste om aan de UM te gaan studeren. Wellicht
volgen er nog.

Dirk Kerstens, Sint-Michielscollege van Schoten

2.3 ‘An enjoyable experience, despite meagre results’
In my last year of high school my math teacher selected the top 5 pupils of our advanced
course in mathematics to attend the competition in Maastricht. We were excited for the
trip, which seemed like an excursion at the time. Later, as a student, I came to think of
the 1.5-hour drive as a relatively short distance. Once we arrived, we participated in the
problem solving competition, which posed challenging tasks and required team work in
a way we were not used to at school.

It was an enjoyable experience, despite meagre results. The competition was followed
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by lectures of several faculties, in which I realised that the book I had been reading the
night before (the German translation of ’Artificial Intelligence: A Modern Approach’)
was a core textbook used at DKE. We ended the day getting lost in Maastricht’s beautiful
back alleys, and when I left I was set to return for the next open day. I visited several
open days, and started studying BSc Knowledge Engineering and Computer Science in
2005, graduated MSc in Artificial Intelligence in 2008 and received my PhD in 2012.
Without this competition I might have missed this opportunity that lay just across the
border.

Michael Kaisers, CWI Amsterdam

2.4 ‘4 gemotiveerde vwo5-leerlingen’
Ik kan me nog goed herinneren dat we de eerste keer als school deelnamen aan de
MMM competitie. Met 4 gemotiveerde vwo5-leerlingen ben ik naar Maastricht gereden.
Hartelijk ontvangen, zoals altijd, door enkele dames van de organisatie. Wij vonden het
allemaal een beetje spannend wat er ging gebeuren. In die tijd waren er nog lekkere
broodjes voor alle deelnemers, voordat de wedstrijd van start ging. Na de gemeenschap-
pelijk instructie gingen mijn leerlingen aan de slag, ik volgde de interessante lezingen.
Vol verwachting wachtte ik mijn leerlingen vervolgens op, erg benieuwd naar hun er-
varingen. Enigszins teleurgesteld vertelden ze me dat ze geen enkele opgave hadden
ingeleverd. Ze hadden het idee dat ze geen enkele einduitkomst hadden. . . . . . toen later
bleek dat ze ook punten kregen voor tussenstappen, konden ze zich wel voor hun hoofd
slaan.

Rather dissappointed my students told my that none of the exercises were
handed in: no feasible answers were found. . . they were about to kick
themselves after being told that intermediate steps and modeling are counted
as well!

We hebben ons toen voorgenomen om terug te komen en een jaar later te laten zien wat
we waard waren! En dat is gelukt, een mooi vierde plaats was een prestatie om mee voor
de dag te kunnen komen. Voor onze school de start van een mooie traditie om jaarlijks
met een goed team naar Maastricht te gaan. Dank voor deze mooie kans!

Jörgen Moonen, Van Maerlantlyceum Eindhoven
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2.5 Maastricht MMM – the hardest mathematics-competition ever?
Why this competition is quite hard? Let me explain. . .
For the students it is
• hard to get up early in the morning at Saturday;
• very hard to find the right room;
• quite harder to solve the really difficult problems;
• between hard and frustrating to see how easy the solutions are while they are

explained in the presentations of Hans Peters and Gijs Schoemakers.
For the teachers it is
• hard to understand the lectures longer than the first two minutes;
• hard to arrive in time:

– in 2015 it snowed in the night, the motorway was covered by snow, maximum
speed approximately 60 km per hour;

– in 2016 we had a breakdown of my car near Aachen. We spend 5 hour at a
gas station waiting for the mechanic and returned to Bonn after that.
While drinking a hot chocolate in the gas station, the owner asked the
students: ‘It seems you are smart in maths, could you please explain me a
calculation. . .’ They could and the day was not useless!

Every year my students enjoy the MMM-Competition, because
• the problems are diversified;
• they don’t have to wait for the results, the prize ceremony takes place on the same

day;
• the building, the mood, the drinks, the other students, . . .

Thank you for the organization, I hope there will be further 25 year of MMM-competition
in Maastricht.

Felix Hartenstein, Amos-Comenius-Gymnasium Bonn
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2.6 Immer wieder ein Highlight
Bei uns am Suitbertus Gymnasium in Düsseldorf fiebern die besten Mathematiker jedes
Jahr auf die Teilnahme am mathematischen Modellierungswettbewerb in Maastricht
hin. Endlich mal ein Wettbewerb, bei dem sich nicht die Sportler sondern mathematisch
begabte Schüler in einem Teamwettkampf miteinander messen können.

Unsere Schule erhielt erstmals eine Einladung zum achten Wettbewerb im Jahr 2002.
Von Eltern begleitet fuhren wir nach Maastricht, ohne so richtig zu wissen, worauf
wir uns einließen. Interessante Aufgaben, wie eine Langspielplatte der Beatles, die
Türmchen von Hanoi oder gleichstarke Fußballteams, zeigten deutlich, wie vielfältig die
Mathematik anwendbar ist. Mit erhitzten Köpfen kamen unsere fünf Teilnehmer nach
zweieinhalb Stunden aus dem Seminarraum und diskutierten bei einer Erfrischung heftig
über die gestellten Probleme. Bei der Besprechung der Aufgaben stieg die Spannung bis
ins Unermessliche. Die Freude war riesengroß als klar war, dass wir den dritten Platz
belegt hatten. Voller Stolz fuhren wir nach Hause.

Getoppt wurde dieses Ergebnis drei Jahre
später: Wir konnten als erste deutsche
Schule den Wettbewerb gewinnen. Nach
der Pisapleite endlich ein Lichtblick für
unsere Mathematiker. Mir ist aus diesem
Jahr eine Aufgabe besonders in Erin-
nerung geblieben, weil hier deutlich wird,
wie ein zunächst kaum lösbares Prob-
lem durch eine geniale Idee so einfach
wird, dass selbst Siebtklässler die Aufgabe
lösen können. Johanna erinnert sich auch
noch genau: ‘Malte gab uns den Tipp: Ze-
ichne ein zum Dreieck CDE kongruentes
Dreieck so in das Quadrat, dass die Seite CD auf die Seite DA fällt. Mit diesem Hilfs-
dreieck war die Lösung kinderleicht.’ So bleiben uns nur die besten Erinnerungen an die
Fahrten zum MMM-Wettbewerb und bei Ehemaligentreffen schwärmen die Teilnehmer
immer noch in den höchsten Tönen von den aufregenden Tagen in Maastricht.

Vielen Dank an alle Organisatoren des einmaligen Wettbewerbs.

H. Kalenberg, Suitbertus Gymnasium Düsseldorf
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Observant, May 18, 1995

2.7 Observant: MMM ‘not just for fun’
Right after the first edition of the MMM-competition, May
13, 1995, the Maastricht University newspaper Observant
reported on the initiative behind MMM: the associated study
programs ’may use some extra students’. Further, it pro-
vides the university teachers with extra information on the
talents of the prospective students ‘at no costs, and with-
out any obligation’. The heading refers to the fact that a
Dutch team won the competition while Dutch and (many
more) Belgian teams participated. Observant noted that the
exercises were set up in typical Dutch (i.e., non-Flemish)
vocabulary. . .
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De Limburger, January 27, 1997

2.8 De Limburger: a report on the 3rd MMM
The third edition of the MMM-competition, January 25,
1997, was reported in the Dutch regional newspaper De
Limburger. The newspaper thought it necessary to observe
that the first Flemish team was found on position 7 in the
final ranking. De Limburger also suggested a possible ex-
planation, namely that the mathematics taught at Flemish
schools was less application oriented. In particular, Flemish
students may be unfamiliar with ‘hagelslag’.
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2.9 The prize winning schools
The table below shows the prize winning schools in the previous 24 editions of the
MMM competition.
E. 1st prize 2d prize 3rd prize

1 Lorentz Lyceum Eindhoven
2 Katholiek Gelders L Arnhem Lorentz Lyceum Eindhoven
3 Katholiek Gelders L Arnhem St Janscollege Hoensbroek
4 St Augustinusinstituut Bree Bissch C Broekhin Roermond St Jozef C Turnh and Mont C Mtricht
5 Montessori C Maastricht St Aloysiuscollege Geel Sted H Dilsen and Theresia L Tilburg
6 Stedelijke Humaniora Dilsen KAI Oostende Maaswaal College Wychen
7 Koninklijk Atheneum I Hasselt Pontes Scholengroep Goes Montessori College Maastricht
8 Elzendaal College Boxmeer Freiherr von Stein G Leverkusen Suitbertus G Düsseldorf
9 G Camphusianum Gorinchem Stiftisches G Düren and Stedelijk L Antwerpen

10 Het Goese Lyseum Goes G Camphusianum Gorinchem Heilig Hart Instituut Heverlee
11 Erzb Suitbertus G Düsseldorf G Fabritianum Krefeld Bonnefantencollege Maastricht
12 KOGEKA 6 Geel Heilig Drievuldigheidsc Leuven Suitbertus-G Düsseldorf
13 Aloisiuskolleg Bonn-Bad Godesberg Humaniora Kindsheid Jesu Hasselt WICO campus St-Hubertus Neerpelt
14 Sted Humaniora Dilsen-Stokkem Wilhelm-Dörpfeld-G Wuppertal Marienschule Leverkusen
15 Aloisiuskolleg Bonn-Bad Godesberg C Heilig Kruis St-Ursula 2 Maaseik Ernst-Moritz-Arndt-G Bonn
16 Ernst-Moritz-Arndt-G Bonn Aloisiuskolleg Bonn-Bad Godesberg Marienschule Leverkusen
17 Ernst-Moritz-Arndt-G Bonn Aloisiuskolleg Bonn-Bad Godesberg WICO Campus St-Hubertus Neerpelt
18 Ernst-Moritz-Arndt-G Bonn Gymnasium Borbeck Essen WICO Campus St-Hubertus Neerpelt
19 Silverberg G Bedburg Städtisches Stiftsgymnasium Xanten Vinzenz-Palotti-Koleg Rheinbach
20 Sint-Michielscollege Schoten Ernst-Moritz-Arndt-G Bonn Freiherr-vom-Stein-G Leverkusen
21 Sint Pieterscollege Leuven Freiherr-vom-Stein-G Leverkusen Sint-Michielscollege Schoten
22 Het College Weert Sint Pieterscollege Leuven Humaniora Kindsheid Jesu Hasselt
23 Sint Pieterscollege Leuven Humaniora Kindsheid Jesu Hasselt Sint-Dimphnacollege Geel
24 Abteigymnasium Brauweiler Wilhelm-Dörpfeld-G Wuppertal Gymnasium Mariënberg Neuss

MMM prize winning schools (abbr.: G Gymnasium, C College)

One school, Ernst-Moritz-Arndt-Gymnasium from Bonn, managed to get the first prize
in three consecutive years, 2010 to 2012.

2011 2012

Winning teams from the Ernst-Moritz-Arndt-Gymnasium, Bonn
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2.10 Are the MMM exercises difficult?
Each edition of the MMM competition contains 5 exercises, and with each of them 10
points can be gained. The table below shows how many points were needed to obtain a
prize in each edition (no results were stored for the first four).

E. year points
5 1999 47 46 44
6 2000 42 35 33
7 2001 32 31 30
8 2002 40 38 35
9 2003 32 30 30

10 2004 37 36 33
11 2005 42 38 37
12 2006 47 45 44
13 2007 39 38 32
14 2008 43 42 41
15 2009 44 34 32
16 2010 44 34 26
17 2011 36 33 32
18 2012 48 42 41
19 2013 50 49 45
20 2014 40 39 36
21 2015 46 45 44
22 2016 50 45 38
23 2017 43 31 27
24 2018 37 33 32

Points of the winning teams

Winning team in 2016, Het College Weert

Winning team in 2013, from Silverberg
Gymnasium, Bedburg

Two times, in 2013 and 2016, the winning team managed to solve all exercises perfectly!

1 euro = 100 cents = 10 cents x 10 cents = 1/10 euro x 1/10 euro = 1/100 euro = 1 cent.
What went wrong?



3. Old questions, new ideas

Looking at the mathematical problems that have featured in the first 25 editions of the
MMM, there are many which catch the eye. Some are funny for the context in which
they are presented, others stand out because of their element of surprise. At first glance,
some will seem quite impossible to solve; yet with a bit of patience, a way to approach
the problem may suddenly pop up. Often, but not always, one may find a quick and
elegant solution by merely looking at the problem from a less conventional point of view.

Remove the nut from the bolt with
the ball

All these problems, riddles, and puzzles of the
MMM belong to the domain of recreational math-
ematics. The topics they touch upon are highly
diverse, as most subfields of pure and applied math-
ematics lend themselves quite well for it, and also
much inspiration can be drawn from physics, engi-
neering, econometrics, and computer science.

The background of all this, is that in the applied
sciences you often encounter situations in which
you must make a decision. Either to achieve a cer-
tain goal, or to optimize something, or maybe you
want a smart design, or you intend to develop a
clever strategy. You can then, of course, base your
choices on your intuition and experience alone and
simply do whatever seems to be reasonable: you
then take what is called a heuristic approach. But
you can also try to model the situation mathemat-
ically, analyze it more carefully, and then go for an
optimal approach. Depending on the complexity,
this second approach often pays off and along the way, as an extra reward, you learn
something and it can lead to interesting conclusions and deeper insight.

At the surface, many of the problems in recreational mathematics and of the MMM
may seem to be just funny riddles (designed for those of us who appreciate that special
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kind of humor that comes along with them), but on closer inspection you will find that
this is only part of their quality. They are often linked to much deeper theories and
fundamental concepts in (pure) mathematics, and to symmetry and optimality principles
in physics and in nature. Our intuition can all too easily be deceived, as every magician
and mathematician knows. The purpose of this chapter then, is to highlight a small
selection of MMM problems from the past, to share some of their fun, to make some of
these hidden connections and underlying principles explicit, and to help you generate
new ideas. Enjoy!

3.1 Secretly in love
From the 6th MMM, 2000. Adrian has a crush on Barbara and would like to bring
a love-letter to her home. He knows in which street she lives, but so far he hasn’t
been able to figure out at which number. All he knows is that the houses in her street
have numbers which run from 8 up to 100. They then have the following conversation.
Adrian asks "Is your house number larger than 50?"; Barbara answers but she lies.

A street in Klaipeda, Lithuania

Next, Adrian asks: "Is your house num-
ber a multiple of 4?"; and Barbara lies
again. Then Adrian asks: "Is your house
number a square number?" This time Bar-
bara speaks the truth. Finally, Adrian asks:
"Does your house number start with the
digit 3?" Barbara smilingly denies this,
but this time we do not know whether or
not she speaks the truth. Adrian then re-
acts by saying: "Now I know where you
live!" But when he tells her the number,
he is all wrong.

Question: at which number does Barbara
live?

Now, to get you started, this is a relatively easy problem to solve, of a type which
features quite regularly at the MMM. It’s just a matter of straightforward bookkeeping,
so if you bother taking up a pen and paper you will find the answer quickly. (If you want,
you can check your steps on our website – the result is 81.) But even though it’s simple,
this problem is included here because it shows two essential qualities of recreational
math problems in their purest form: (1) If you read the story a little too fast or superficial,
your intuition will tell you that this problem is unsolvable, because of all the lying and
uncertainty in the answers. This is the element of deception. The problem looks hard
while in fact it is easy. You may then be tempted to choose an unnecessarily complicated
approach to solve it. (2) All you need for your solution is elementary logic reasoning,
no guessing and gambling required. In this case, just follow the logic of Adrian and
then combine it with the information provided on the truth or falsehood of Barbara’s
answers. Uncovering this ‘flow of information’ is often essential in solving this kind of
recreational math puzzles.

To solve the following problem, exactly the same principles of logic reasoning can be
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applied. But this one is quite a bit harder, because you need to put much more effort into
accurately writing down the information flow (i.e., building a mathematical model of it).

From the 17th MMM, 2011. Each of three people is wearing a hat on which a natural
number (1,2,3, . . .) is printed. All three can see the numbers on the other two hats, but
not their own number. All are told that one of the numbers is equal to the sum of the
other two. The following statements are made in the hearing of all, and consecutively.
A: I cannot deduce what my number is.
B: I cannot deduce what my number is.
C: I cannot deduce what my number is.
A: I can deduce that my number is 50.

Question: What are the numbers on the other two hats? Compute all possibilities.

To solve this problem, consider the first statement of person A. He sees the numbers
on the hats of B and C, but cannot deduce his own number. So we ask ourselves the
question: when could he have deduced it? If we denote the numbers on the hats of A, B
and C by the symbols a, b and c, respectively, then we know (and A knows) that either
a = b+ c, or a equals the (positive) difference between b and c, which we can write as
a = |b− c|. The first option cannot be excluded. However, the second option can, but
only in the special case when b = c, because then |b− c|= 0 while we know that a > 0
(as it is known to be a natural number). But A wasn’t able to deduce the value of a, so we
can conclude that b 6= c. And of course, B and C, who hear all this and are equally clever
as A, can now make use of this extra information! This is the mathematical modeling
that needed to be done here: the symbols a, b and c had to be introduced and statement
A was rewritten, simply and efficiently, as the equivalent statement b 6= c.
In a similar way, we can proceed with the other
statements, even though the complexity increases
step by step. It follows that the first three state-
ments give the following bits of extra information:
A: b 6= c.
B: a 6= c and c 6= 1

2a.
C: a 6= b and a 6= 1

2b and b 6= 1
2a and b 6= 3

2a.

With all this information combined, there are now
several situations in which A can deduce the value
of a to support the fourth statement. He still cannot
exclude the option a = b+ c, but he can rule out
the option a = |b− c| if for the values of b and c
(which he sees!) it follows that the corresponding
a is to violate one of the pieces of information collected above. But we also know that
a = 50, and that b and c are both positive integers. This simplifies our computations and
we find that there is only one possibility left: a = 50, b = 20 and c = 30. (The condition
which then gets violated is a 6= 1

2b should you suppose that a = |b− c|. So, for these
values one can indeed conclude that a = b+ c = 50.)

3.2 Triangle or square?
From the 8th MMM, 2002. Strolling along the beach, Robin has collected 36 beautiful
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seashells. She suddenly notices that she can arrange them in two different but both
highly symmetric geometric patterns: (1) as an equilateral triangle (with 8 shells on
each side), and (2) as a square (with 6 shells on each side). This happens because 36 can
be written on the one hand as n(n+1)/2 and on the other hand as m2, for two integer
numbers n and m (here we take n = 8 and m = 6). Robin asks herself if there are any
other pairs of numbers with the same property. This is indeed the case, in fact there are
infinitely many such pairs.

Question (a): Find other integer numbers n > 8 and m > 6 for which it also holds that
n(n+1)/2 = m2.
Question (b): Find a formula which allows you to compute a new larger pair (n,m)
with the given property from an available smaller one. You are allowed to present a
recursive formula, but not a brute force computer program which systematically checks
new options until one happens to fit the required specifications.

The equation n(n+ 1)/2 = m2 for integers n and m is called a Diophantine equation.
It is named after Diophantus of Alexandria, a famous mathematician who lived in the
Hellenistic city of Alexandria, in Egypt, in the 3rd century AD. A system of Diophantine
equations has less equations than unknowns, all with integer coefficients, but with the
characterizing condition that solutions for all the unknowns must be integer-valued.
Without this integrality condition, a curve (or surface, or hypersurface) of infinitely
many real solutions will usually exist; but with the integrality condition imposed this will
be far less clear. And: if some solutions happen to be known, it still may not be possible
to find more, or to find them all. A Diophantine equation can be viewed geometrically:
one then is looking for grid points on a given curve (or surface) described by the equation.
Diophantine equations have been studied since antiquity, because integers appear in
many practical problems and the rational numbers (the quotients of integers) have long
been the preferred class of numbers to work with. Certain real numbers, such as square
roots, were known to be irrational in India (in the 8th century BC) and in Greece (in the
5th century BC), but a proper mathematical construction of the set of real numbers is a
19th century invention. Diophantine equations have the reputation that many of them are
notoriously hard to solve. (But hey, this is the MMM, so we will not easily be scared.)

Here is a short list of some famous Diophantine equations:
a2 +b2 = c2, describing all the Pythagorean triples. This produces all the right triangles
having only sides of integer length. All solutions to this equation can be found by a
similar approach as what we will use below to answer Robin’s questions.
an+bn = cn, in which n≥ 3 is also an integer. Fermat’s Last Theorem (1637) states that
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this equation has no nontrivial integer solutions. After more than 350 years, this claim
was finally proved to be valid, by Andrew Wiles in 1994.
ax+by = c, for given integer coefficients a, b and c, and integer unknowns x and y. This
is a linear Diophantine equation, which corresponds to the Bézout identity. It states
that solutions exist if and only if c is a multiple of the greatest common divisor of a
and b. The Chinese remainder theorem generalizes this to more coefficients and more
unknowns. Linear Diophantine equations have been completely solved.
x2−ny2 =±1, in which n is a given integer and x and y are the integer unknowns. Today
this is called Pell’s equation, after John Pell who lived in the 17th century. But it was
already studied long before it got this name, notably by the mathematician Brahmagupta

Brahmagupta

in the 7th century AD in India. The special case
with n = 2, which we will encounter shortly, was
in fact studied in India and Greece as early as the
year 400 BC, because of its connection to approx-
imations of

√
2 by rational numbers.

Let us return to Robin’s problem and see if we can
find a solution to question (b). A surprising feature
of the given exercise is that we can do so with very
elementary tools. We rewrite n(n+1)/2 = m2 as
n(n+1) = 2m2, and we note that n and n+1 differ
by just 1, so that they cannot have any factors in
common. The prime factors of 2m2 come in even
amounts, except for factors 2 of which there is an
odd number. It follows that there exist integers k
and ` (with no factors in common) such that m= k`
and either n = 2k2 and n+ 1 = `2, or n = k2 and
n+ 1 = 2`2. This means that either `2− 2k2 =
1, or k2− 2`2 = −1 (so here we encounter Pell’s
equation for n = 2).

Now consider just the first case. We rewrite `2− 2k2 = 1 as `2− 1 = 2k2, then as
(`− 1)(`+ 1) = 2k2. Because the right-hand side is even, ` is odd, which can be
expressed by writing ` = 2p+ 1 for some integer p. We find that 2p(2p+ 2) = 2k2.
The left-hand side has at least two factors 2, so that k is even. This can be expressed
by writing k = 2q for some integer q. Plugging this into the equation and dividing both
sides by 4 produces: p(p+1) = 2q2.

Here is the surprising element: starting from n(n+1) = 2m2 we have arrived at p(p+
1) = 2q2, which appears to be exactly the same problem! Have we made any progress
then at all? Yes we have, because p and q are smaller than the numbers n and m that we
started from. If we select a given solution for p and q (for instance p = 8 and q = 6) then
we can retrace our steps to compute a new and much larger solution for n and m. In this
way we find k = 2q = 12, `= 2p+1 = 17, for which n = 2k2 = 288 and m = k`= 204.
More generally: if (p,q) is a solution, then (n,m) is also a solution for n = 8q2 and
m = 2q(2p+1).
Repeating this procedure, infinitely many solutions are obtained. (In this way, we don’t
find all solutions because we disregarded one case, but this is good enough to answer
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Robin’s questions. See the solutions on the MMM-website for more details.)

Bonus problem. The most natural context to pose the question of how to rearrange an
equilateral triangle as a square, is of course not number theory, as in Robin’s problem,
but geometry. So, if you are given a square with sides of unit length, can you split it up,
using only a ruler-and-compass construction, into pieces that can be rearranged to form
an equilateral triangle? And what if you start from an equilateral triangle? Below (next
page) is a figure that shows a solution, but the actual construction is left for yourself to
discover.

Ruler-and-compass construction

3.3 How to catch a mouse?

From the 13th MMM, 2007. It is Thursday morning, and you have seen a mouse on
your attic. There are two mouse holes in one of the walls: one on the left and one on the
right. You would like to catch the mouse, and preferably before Sunday, because then
your grandmother will visit you and mice scare her to death. The problem, however, is
that you only have a single mouse trap. To catch the mouse you place the trap in front of
one of the two holes, and then you leave it there for a whole day. The next day, if you
have not yet caught the mouse, you may leave the trap where it is, or you may move it
over to the other hole. Let us assume that during the day the mouse is lazy and does not
move from one hole to the other.
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If you placed the trap in front of the hole where the
mouse is residing, then sometime during the day it
will peep out and you will catch it with certainty.
If it’s placed at the wrong hole, you won’t catch it.
However, during the night the mouse doesn’t come
out, but it may walk from the vicinity of one hole
to the other through some hidden corridors behind
the wall.

You hold the following theory about the mouse: At
Thursday morning, you believe there is a chance of 70% that the mouse is in the left
hole, and 30% that it is in the right hole. If the mouse, on any day, is in the left hole and
survives till the evening, you believe that there is a chance of 80% that it will go to the
right hole during the night. If the mouse, on any day, is in the right hole and survives till
the evening, you believe there is a chance of 50% that it will walk to the left hole during
the night.

Question: Make a plan such that your chances of catching the mouse before Sunday are
as big as possible.

This is an example of a strategy game with one player (that’s you, not the mouse!) in
which you also have to deal with uncertainty. Humans have a reputation for being really
bad at dealing with uncertainty, particularly when based on intuition alone. We are all
too easily scared by those rare incidents which make it to the headlines in the news (plane
crashes, terrorist attacks, and so on) while we happily engage in far more dangerous
activities on a daily basis (driving and biking on the road, smoking and drinking, playing
sports). Did you know that most accidents occur at home, most murders are committed
by relatives and friends, and that the mammal causing the highest amount of casualties
each year is the cow?

So, what does your intuition tell you about this problem? Initially, the mouse is likely to
be in the left hole, and you need to catch it fast. So if you were given just a single day to
accomplish this task, then you should place the mouse trap on the left. Three days isn’t
that long, and you can still fiddle around with where you place the mouse trap on the
other two days to further boost your chances. This is quite obvious how your strategy
should look, you will think, so we must start on the left. Or must we?

A strategy like this is called a greedy heuristic. It’s not optimal, but certainly not plain
stupid either, because it is optimal for the first day. We just avoided any deeper analysis
and we did not account for more complicated developments that could occur on day two
and three. This is convenient, fast, and often gives reasonably good results, so we use it
all the time in real life. In science and engineering we also use greedy strategies, for
instance when we have to make quick decisions and a situation is too complex to fully
analyze in a short time. Quite often, a ‘smart technology’ in artificial intelligence is
really little more than a good and greedy heuristic, based on data analysis and pattern
finding. But it’s also a bit like the government not willing to plan several years ahead,
because the next elections are coming up soon, and much can happen along the way...

To find an optimal strategy to catch the mouse, here we can simply perform a full
analysis without too much effort. There are only 8 strategies to consider: on Thursday,
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Friday and Saturday, we can place the mouse trap either on the left or on the right: LLL,
LLR, LRL, LRR, RLL, RLR, RRL, RRR. Each of these cases is easily analyzed taking
the given probabilities into account. And even though LRR gives a catching probability
of 97%, the optimal strategy surprisingly turns out to be RRR, which achieves 97.2%.

3.4 On the road again
From the 6th MMM, 2000. Four cities are located on the corners of a square with each
side of length 25km. To economically strengthen the local region, a new network of
highways is to be developed to replace the old one. It must allow the inhabitants to travel
between all four cities avoiding smaller local roads.

A networks of highways, 75 km in total

For reasons of sustainability, the environment,
and the economic use of resources, the total
length of the new highways making up this
new network has to be minimized.

Question: design such a minimal network and
compute its total length.

A first way to go about this, a very simple one,
is to connect A to B, B to C, and C to D, along
the edges of the square they form. That makes
75km in total.

A second way, is to label the intersection point
of the two diagonals E, and to connect A to E,
B to E, C to E, and D to E. Then the total length of the network equals 50

√
2≈ 70.71km,

which is a few km less. But: it is still sub-optimal (which is a nice way of saying that
you can do better)!

As it happens often in mathematics, you can gather useful insight by studying simpler
versions of the problem first. In the present case, this means that you ask yourself the
question what happens when you try to connect fewer cities, for instance two (well,
that’s easy!) or three.

For three cities, you then stumble into a famous problem raised by Pierre de Fermat in
1643 and solved by Evangelista Torricelli. The Fermat-Torricelli point of a triangle (with
angles all less than 120 degrees), is the unique point inside that triangle such that the line
segments which connect it to the three vertices make three angles of 120 degrees each.
You can find it experimentally by exploiting a principle from physics which states that
nature strives to minimize potential energy. Draw the triangle on a piece of cardboard,
hold it flat, drill small holes at the locations of the vertices, put a separate piece of string
through each hole and tie each string to a separate but equal weight below the cardboard,
finally tie the ends of the three strings above the cardboard together in a single knot,
and then let go. As nature minimizes the potential energy in the system, the total length
of the three pieces of string below the cardboard is maximized, so the total length of
string above the cardboard gets minimized. The knot above the cardboard will therefore
move to the location of the Fermat-Torricelli point. Since the three weights are equal,
the forces in the three strings are equal too, so at the knot there are three equal forces
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pulling at it into three different directions. For the knot to be in equilibrium, these forces
must pull into directions which make angles of 120 degrees. (Of course, you can also
find this point by a suitable geometric construction, using ruler and compass; see the
MMM-website.)

To see that you can improve on the second approach above, just consider the triangle
formed by the vertices A and B and the intersection point of the diagonals, E. This
part of the road network design can now be improved by connecting A, B, and E using
the Fermat-Torricelli point (say F) of the triangle ABE. Likewise, the other part of the
network involving C, D, and E can also be improved using the Fermat-Torricelli point
(say G) of the triangle CDE. We then arrive at what turns out to be an optimal solution, for
which the total length of the network is easily computed to equal 25(1+

√
3)≈ 68.30km.

The optimal solution, about 68.30 km in total

This problem is an instance of what is known as the Euclidean Steiner tree problem.
In general, when N locations are to be connected, one may have to introduce up to
N− 2 additional points (Steiner points, i.e., local Fermat-Torricelli points) to arrive
at an optimal design which minimizes the total length of the network. In the given
problem we had 4 points (A, B, C, and D) and we introduced 2 Steiner points (F and
G; note that E is located on the line connecting F and G and can be omitted from
the final solution). The Steiner tree problem has several generalizations to different
situations of practical relevance. For instance, the Steiner tree problem on weighted
graphs aims at connecting a choice of given nodes in a graph using only the edges
(and possibly some more nodes) of that graph, thereby minimizing the total weight
along the edges that are used. In this sense, it generalizes and combines two famous
problems from combinatorial optimization and graph theory: the shortest path problem
and the minimum spanning tree problem. The Euclidean Steiner tree problem can be
generalized to points in n dimensions, and also to situations in which the paths are
required to consist of sections that must run either horizontal or vertical, which is useful
in micro-electronics for optimizing the design of computer chips.
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3.5 A piece of cake
From the 14th MMM, 2008. A cake is sliced into a number of completely equal pieces.
The cake is distributed among some cake-lovers by the following procedure, carried
out by the cake-master. Each cake-lover is given a number of colored pins. Then each
cake-lover distributes her pins (each person has a different color) over the slices in
anyway she likes. If all the pins are stuck into the cake, and no cake-lover wishes to
change the distribution of her pins, then each of the slices is distributed proportionally
with respect to the numbers of pins stuck into it.

Carrot cake slices

(For instance, if a particular slice has 2 red
pins in it and 3 blue pins, then the owner of the
red pins gets 2/5 of this slice and the owner of
the blue pins gets 3/5.)

Suppose that the cake is sliced into 10 pieces
and that there are three cake-lovers, Red, Blue
and Green: Red has 4 pins, Blue has 6 pins,
and Green has 8 pins. The cake-lovers start
distributing their pins over the slices. To her
surprise, the cake-master observes that after a
little while none of the cake-lovers wishes to
change her pins.

Question (a): Which share of the cake does each cake-lover get? [Hint: more than one
distribution is possible.]
Question (b): Suppose now that the cake is sliced into 3 equal pieces, and there are
6 cake-lovers with five of them having 2 pins and one of them having 1 pin. Will the
cake-lovers ever stop changing their pins? If so, describe the possible shares of the cake
that each one gets. If not, provide an argument why.

In this problem, we see different cake-lovers competing with each other to get as big a
piece of the cake as they can. Apparently they can make initial choices, but afterwards
they can still change their mind and respond to the choices the others are making. In the
situation of question (a), at some moment in time they happen to stop making changes.
What does this mean?
It means that the players (the cake-lovers) have found what is called a Nash equilibrium
for the game they are playing (the cake-selection competition they are having). A Nash
equilibrium is named after John Nash, an American mathematician (1928-2015), who is
most famous for his ground-breaking work in game theory and decision-making. He
shared the Nobel prize in economic sciences in 1994, and he shared the Abel prize in
2015 for his work on nonlinear partial differential equations. The 1998 biography and
the 2001 movie A Beautiful Mind present an intriguing portrait of his life, scientific
achievements, his mental illness and the resulting personal struggles.

We say that the players are together ‘in Nash equilibrium’, if for each player it holds
that she cannot obtain a better outcome by unilaterally changing her decisions if the
decisions of the other players all remain unchanged. Nash has proved the existence of a
Nash equilibrium for a large class of games to which the current game also belongs: the
situation observed by the cake-master is precisely that of a Nash equilibrium that has
occurred.
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John Nash

How to compute a Nash equilib-
rium for the game at hand? A
brute force approach could work
like this. Each of the players Red,
Blue, and Green, has a finite num-
ber of strategies to deploy: there
are just a finite number of pieces
of cake into which they can stick
the finite numbers of pins they
have. For each possible combina-
tion of the choices they can make,
you then can check what happens
if one player were to deviate unilaterally. Though this approach will work in theory, this
is not an advisable practical approach to the problem, because unfortunately there are
way too many combinations to try. Therefore, one needs to start reasoning to exclude
the majority of combinations and to limit the computational work.

First observation: There are 10 slices and in total 18 pins. Clearly, there will be at least
1 pin in every slice, otherwise any player would do better (get more cake) by moving
one of her pins from a slice with multiple pins to this slice without pins.

Second observation: There will be no slice with 3 (or more) pins in it. This can be seen
as follows. There must be a slice with only 1 pin in it. Consider a slice with at least 3
pins. Clearly, there are no multiple pins in it from one and the same player, otherwise
that player could remove one of her pins and stick it elsewhere where she has no pins
yet, thus getting more cake. Therefore, all three players have one pin in the slice with
the 3 pins, and two of them have no pin in the slice with 1 pin. Such a player can do
better by moving her pin from the slice with 3 pins to the slice with the 1 pin: she loses
1/3 of a slice but gains 1/2 of a slice.
Hence, every slice has either 1 or 2 pins in it.

Third observation: The eight slices with 2 pins in it each have pins of different colors
in it: otherwise a player with 2 pins in one and the same slice can easily do better by
sticking one of her pins into a different slice claimed by at least one of the other players.

Any configuration satisfying the requirements established so far will be a configuration
where no player can do better by changing her own pins. There are many such configu-
rations but in terms of shares of the cake there are only six different ones, depending on
who has pins in the two slices that have only 1 pin in it. Denoting these by the respective
colors, we have the following shares for (R,B,G):
RR: (3/10,3/10,4/10)
BB: (2/10,4/10,4/10)
GG: (2/10,3/10,5/10)
RB: (5/20,7/20,8/20)
RG: (5/20,6/20,9/20)
BG: (4/20,7/20,9/20)
This shows all the valid answers that can be given to question (a).

To address question (b), a similar approach can be taken. There are now 3 slices and 11
pins.
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First observation: There can be no slice with 5 (or more) pins in it. For in that case,
there must be a slice with (at most) 3 pins in it. Then it must be the case that all pins in
the 5-pin slice are from different players (otherwise there would be a player with both
pins in this slice and that player would do better by moving one of her pins to the 3-pin
slice). At least one of them does not have a pin in the 3-pin slice, and can do better by
moving her pin there (loss 1/5, gain 1/4).
Hence, there must be two slices with 4 pins and one slice with 3 pins.
Second observation: One can argue again that no player has both pins in one and the
same slice.
This leaves many different possible configurations, but they are all of two kinds:
(1) The 1-pin player has her pin in the 3-pin slice: then the 1-pin player gets 4/36, two
of the other players obtain 7/36 each, and the remaining three players obtain 6/36.
(2) The 1-pin player has her pin in a 4-pin slice: then she gets 3/36, three of the other
players get 7/36 each, and the two remaining players get 6/36 each.
(In each of these cases we do have a Nash equilibrium, and there is no reason why the
cake-lovers wouldn’t find it or continue to change their pins.)

In game theory, the strategies that the players can use may sometimes also be mixed
strategies. In the problem above, the players had to place their pins somewhere, which
forced them to use pure strategies. If instead the players play the same game repeatedly,
but in each round they have to place their pins simultaneously (thus being able to
anticipate the other players’ actions, but unable to respond immediately to what the
others are playing currently), then they could decide to choose their actions randomly
from their own set of pure strategies. This is what is called a mixed strategy. Again, such
games can exhibit mixed Nash equilibria, for which one then must evaluate statistically
the expected pay-offs.

Fortunately, not all food sharing competitions are as complicated as the one above; some
are really a piece of cake.

From the 15th MMM, 2009. Alice and Bob are sharing a round pizza. Bob starts by
cutting the pizza into an even number of slices, and all slices are circular sectors of
possibly different angles. Then Alice continues by taking a piece of her choice, and after
that they both take turns taking a piece. However, they are only allowed to take one of
the two pieces that is at either end of the remaining part of the pizza.
Clearly, Bob could cut the pizza into equal slices and in that way obtain exactly half of
the pizza.

Question: can Bob guarantee to obtain strictly more than half of the pizza?

If you think that the answer is yes, then you should describe a strategy for Bob that
makes him get more than half of the pizza, no matter what Alice does. This means that
you have to describe how Bob cuts the pizza, and how he proceeds after that, depending
on which slices Alice takes.
If you think that the answer is no, then you have to show that, no matter how Bob cuts
the pizza, Alice always has a way of picking pieces so that Bob gets at most one half of
the pizza in total.

Here is a quick solution. Alice alternately colors the slices of the pizza black and white
(in her mind, of course). Then either the black slices or the white slices comprise at least
half of the area of the pizza.
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Let us assume it is the black slices. Now Alice can start by taking any of the black slices.
Then Bob only has two white slices to choose from. No matter which one he takes,
Alice will have the choice between a black and a white slice, and will take the black one.
Again, Bob can only choose from two white slices. This way Alice will end up with all
the black slices and Bob gets all the white slices, giving Alice at least half of the area of
the pizza.

A funny element in this solution, is that Alice can start by taking the smallest slice of
the color she wants to collect all the slices of, and still end up having at least half of the
pizza! And of course, if Alice is on a diet and wants to downsize her pizza consumption,
she can also guarantee to get at most half of the pizza.

3.6 Ant problems
It’s that itchy feeling again. Ant problems! Did you know that, curiously, Ant-arctica
is the only continent on earth without ants? Yes, ants are virtually everywhere, and the
clever way in which they cooperate to solve complicated tasks are a source of inspiration
for scientists in game theory as well as in artificial intelligence, to find and describe
results of cooperative strategies for large groups of autonomously acting players or
agents.

From the 20th MMM, 2014. A 12 by 25 by 36 cm cereal box is lying on the floor on
one of its 25 by 36 cm faces. An ant, located at one of the bottom corners of the box,
must crawl along the outside of the box to reach the opposite bottom corner.
(Note: The ant can walk on any of the five visible faces of the box, except for the bottom
face, which is flath in contact with the floor. It can crawl along any of the edges. It
cannot crawl under the box.)

Question: What is the length of the shortest such
path?

Now, this is not such a tough problem. To solve it,
just flatten the box and lay it out, so that you can
design a route by drawing a straight line from one
point to another. There will be multiple points cor-
responding to the starting point and to the targeted
end point, but you will see that there are just a few
candidate routes to consider. The answer you are
expected to find is

√
372 +482 ≈ 60.605 cm.

Another classic ant problem. Today in my garden I witnessed 4 ants on a square tile
of size 50 by 50 cm. Each of them was in a different corner when suddenly they saw
each other and started to move. In a clockwise manner, the first ant walked straight into
the direction of the second ant, the second towards the third, the third towards the fourth,
and the fourth towards the first.
They noticed that their targets were moving, so they continuously adapted their directions
to compensate for it, always keeping their focus straight on their targets. They all moved
at the same speed of 2 cm/s, and eventually they all arrived together in the center of the
tile.
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How long is each of the paths the ants walked along (i.e., from the corner along the
curved trajectory to the center of the tile)?

What makes this problem interesting, is that it is
again about a shortest path, seems quite hard to
model mathematically, but can be solved easily
once you adopt the right point of view. What you
could do, is to set up a differential equation which
describes the curve a chosen ant is walking along,
then solve that equation, and finally set up and
solve an integral to compute the path length. That’s
hard and complicated and we will not do so here.
Once again, physics is called to the rescue. Some-
times you can find shortest paths by considering
how light will travel in varying media, as light is
bound to take the (time-wise) shortest path. In this
case, however, physics helps by exploiting the symmetry of the problem. For each of
the 4 ants, the situation is identical, so at all times they constitute a perfectly square
configuration. As they walk and adapt their directions, the ants make that square con-
figuration smaller, and they also make it rotate. By adopting a coordinate system that
counteracts the rotation, simply by rotating along with the ants (just imagine a suitably
rotating camera above the scene, a trick often used in movies), what remains to be seen
is a shrinking but otherwise stable square configuration. So how fast does it shrink?

From the perspective of an ant that is fully focused on its target, all it experiences is an
initial distance of 50 cm and a speed of 2 cm/s in the chosen direction. The target ant
moves into a direction that is perpendicular to the direction of the ant that hunts it, so
from a relativistic perspective it does not delay nor speed up the hunting ant. Therefore:
each ant needs 25 seconds to reach its target and they all walk curved trajectories that
are 50 cm long.

As a final challenge: can you now figure out how long it takes if my garden tiles were
triangular with sides of 50 cm and 3 ants in their corners? And what if the tiles were
hexagonal with 6 ants on it?

Ralf Peeters, Department of Data Science and Knowledge Engineering, Maastricht
University

What is the mean distance between two random points on a unit square?



4. The Programme of the 25th MMM

The official announcement of the 25th MMM competition is found on the next page.

Audience at one of the lectures for teachers, 2011

It can be easily calculated that the digits 0 to 9 can be arranged into 3628800 distinct
ten-digit numbers. How many of these numbers are prime?
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25th MATHEMATICAL MODELLING COMPETITION
MAASTRICHT

Date: Saturday January 26, 2019
Location: Tongersestraat 53, 6211 LM Maastricht

(You can park your car at the parking lot over there)
Room: Introduction in the Aula
(Building of the School of Business and Economics, Maastricht University)

PROGRAMME

10.00 - 11.15 hrs Reception and registration
NOTE: Sandwiches are offered again this year !

11.15 – 11.30 hrs Introduction (Aula)

11.30 - 14.00 hrs Students: Competition
Small bottles of water are available in the Mensa
to take away into your appointed room

Teachers: Lectures
Location: room H0.06, opposite of the Aula

11.30 hrs Lecture by: Niels Mourmans
Title: ‘Psychological games: modeling strategic

12.00 hrs Lecture by: Katerina Stankova
Title: ‘Cancer Therapy: Changing the game’
interactions with other-regarding motivations and
emotions’

12.30 hrs COFFEE BREAK (Ad Fundum)

12.45 hrs Lecture by: Gijs Schoenmakers
Title: ‘Big, bigger, biggest. Some of the largest
numbers ever used in mathematics!’

13.15 hrs Lecture by: Christof Defryn
Title: ‘The supermarket math’

13.45 hrs END

14.00 - 15.00 hrs Break (drinks) for everybody in the Mensa

15.00 - 16.00 hrs Explanation about the exercises and prize ceremony (Aula)

Information MMM: https://project.dke.maastrichtuniversity.nl/mmm/.



5. The Exercises of the 25th MMM

5.1 Problem 1: Three Circles
The three circles in the figure below touch each other pairwise and they all touch the
bottom line. The two light gray discs each have an area of 25. What is the area of the
dark gray disc?
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5.2 Problem 2: Weight Watching
A huge bag contains infinitely many balls of different weights. For each non-negative
integer n ≥ 0, it contains 25 balls of weight n. Thus, there are 25 balls of weight 0,
25 balls of weight 1, 25 balls of weight 2, etc. Let us assume that days are numbered:
d = 0,1,2,3, . . .

Is it possible to take out exactly five balls on each day d (until forever), such that the
total weight of the balls taken out of the bag on day d is equal to d? For example, on
day 1 the only way to do that is to pick four balls of weight 0 and one ball of weight 1.

If you think that this is possible, then show how. Otherwise, give an argument why this
is not possible.

5.3 Problem 3: Line Dancing
Professor K makes a euphoric dance after making another scientific breakthrough. The
dance consists of 25 equally sized steps, 14 to the left and 11 to the right. So, indeed
professor K is performing a line dance. Obviously, at the end of his little dance Professor
K is three steps to the left of his starting position.

a. How many different possibilities are there for professor K’s dance?
b. How many of those dances start with a step to the right?
c. It turns out that, once he started his little dance, the professor never visited his

starting position anymore. How many different possibilities are there now for
professor K’s dance?

5.4 Problem 4: Cards in Space
Lando bets his spaceship against Han in a party of the most famous card game in the
universe. We shuffle 24 cards, numbered from 1 to 24, then we deal half of the cards to
Lando and half of the cards to Han. One at a time, they play one of their cards on the
table, with the number visible. The winner is the first player who plays a card such that
the sum of the cards on the table is divisible by 25. If Lando starts, and if each player
plays optimally, what is the probability that Han wins (and then becomes the new owner
of the Falcon Millenium)?
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5.5 Problem 5: ‘Goes out one ear and into the other’
Today is party time, as we celebrate the 25th edition of the MMM. My garden gnome
participates in these festivities, and I have decorated it with a special red party hat, which
carries the five-pointed star of the city of Maastricht that I placed right on the front, with
its center exactly in the middle of the party hat.

The upper part of the garden gnome’s head (which for the most part
fortunately is hidden under the hat) is shaped as a sphere, and the
gnome’s two ear holes happen to be located precisely diametrically
opposite each other on that sphere. When measured in centimeters,
the distance between the two ear holes (the diameter of the sphere)
exactly equals the square root of 136.

The party hat itself is shaped as a cone and it perfectly fits on the
garden gnome’s head. To specify this further: it is tangent to that
sphere just there where the brim of the hat touches it in a circle. This
circle is of course a little smaller than the ‘great circles’ on the sphere:
if the garden gnome stands straight up, then this touching circle is
placed in a horizontal plane exactly 2 cm above the horizontal plane
that passes through the two ear holes.

This morning I witnessed a surprising scene. An ant crawled out of
the garden gnome’s left ear! It first crawled up to the brim of the party hat to the point (2
cm higher) that is straight above the left ear. I later measured that in doing so, it covered
a distance of 2.51 cm. (Clearly, it needed a bit more than 2 cm to get there, because as
you can see the ears aren’t nicely shaped as a sphere.) Next, from that point on the brim
onward, the ant crawled further across the party hat in the shortest way possible to the
center of the five-pointed star of Maastricht. Then it continued its way to the right ear,
in which it finally disappeared, by following a path which precisely mirrored the path it
took on the left side of the garden gnome’s head and hat.

Question (a): My garden gnome is English, and it’s indicated on the label that without
the hat it’s exactly 20.60 inches tall. How tall is it, in inches, now that it is wearing the
hat?

Question (b): What is the total distance covered by the ant, in centimeters, when it went
out one ear and into the other, along the path described above?

(Note: By definition, 1 inch exactly equals 2.54 cm. For both questions: specify your
answers to 2 decimals after the decimal point.)
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5.6 Solutions
Answer to Problem 1: Three Circles
Here, x is the radius of the big circle. Since πx2 = 25, x = 5/

√
π .

The radius of the small circle is y. By the Theorem of Pythagoras, (x+y)2 = x2+(x−y)2,
hence x2 = 4xy, so that y = x/4 = 5/(4

√
π). Therefore, the area of the dark gray disc is

πy2 = 25/16 = 1.5625.

Answer to Problem 2: Weight Watching
This is possible, as follows.

d = 0: 0,0,0,0,0
d = 1: 1,0,0,0,0
d = 2: 2,0,0,0,0
d = 3: 3,0,0,0,0
d = 4: 4,0,0,0,0

d = 5: 1,1,1,1,1
d = 6: 2,1,1,1,1
d = 7: 3,1,1,1,1
d = 8: 4,1,1,1,1
d = 9: 5,1,1,1,1

and in general for d = 5x+ y, with x = 0,1, . . . and y = 0,1,2,3,4:

d = 5x+0: x+0,x,x,x,x
d = 5x+1: x+1,x,x,x,x
d = 5x+2: x+2,x,x,x,x
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d = 5x+3: x+3,x,x,x,x
d = 5x+4: x+4,x,x,x,x

This way we use 21 balls of weight 0, 22 balls of weight 1, 23 balls of weight 2, 24 balls
of weight 3, and 25 balls of weight 4 or larger. To see this, note that we use balls of
weight x≥ 4 on days d = 5x+0,5x+1,5x+2,5x+3,5x+4 (in total 21 balls), and on
days 5x−4,5x−8,5x−12,5x−16 (in total 4).

Answer to Problem 3: Line Dancing
a. A dance consists of 25 steps of which 14 are to the left. So we select 14 from the 25
steps that are going to be the steps to the left. This can be done in

(25
14

)
(= 4457400)

ways.

b. After the step to the right we still have 24 steps to go, 14 of which should be to the
left. So

(24
14

)
(= 1961256) dances start with a step to the right.

c. Notice that we can write a dance as a sequence of L and R of length 25, consisting of
14 Ls and 11 Rs. We have three different types of dances: the ones that start with an R,
the ones that start with an L and that do return to the initial position some time during
the dance and the ones that don’t return to the initial position during the dance.
We need the following observation. Suppose that we have a dance d that starts with an R.
Then after the first step prof. K has taken more steps to the right that to the left. Since at
the end of the dance he has taken more steps to the left, we know that after some number
of steps, say p ∈ {2,4, . . . ,22} we have that for the last time he has taken exactly the
same number of steps to the left as to the right.
Now consider dance d̂, that is the ‘complement’ of dance d in the sense that at all
steps until step p it takes a step in the opposite direction of dance d and after step p
the steps are in the same direction as dance d. An example (for an eight-step dance):
If d = RRLLLRLL, then p = 6, so the first 6 steps of d̂ must be the opposite of d. So
d̂ = LLRRRLLL. We can do this for every dance d that starts with an R, which shows
that the number of dances starting with an R is exactly the same as the number of dances
starting with an L that does return to the initial position some time during the dance.
Therefore, let X be the number of dances that start with L and that do not return to
its initial position during the dance. Then X is equal to the total number of dances
minus two times the number of dances that start with an R. Or: X =

(25
14

)
−2 ·

(24
14

)
=

4457400−2 ·1961256 = 534888.

Answer to Problem 4: Cards in Space
Remark that Lando cannot win the first card, because the numbers between 1 and 24 are
not divisible by 25. After the first card has been played, the remainder of the division by
25 of the sum of the cards on the table is a number i between 1 and 24. Only the card
24− i can win at the next choice of Han (but maybe Han does not have it). Then, for
each card he has played, Han knows the card Lando needs to have to win at the next turn.
Moreover, Han knows the cards of Lando (all the numbers between 1 and 24 except the
cards he had at the beginning and the cards they played). As Lando started Han has one
more card than Lando when he plays, so he can choose a card such that Lando cannot
win the next turn. Hence, Lando cannot win. Then, either Han wins before he plays his
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last card, or he plays his last card, and the sum 1+2+ ...+24 = 24∗25/2 is divisible
by 25. So Han wins all the time, and the probability is 1.

Solution 5, ‘Goes out one ear and into the other’
Question (a): When viewed from the front, the situation is as follows.

Working in centimeters, the diameter of the sphere equals
√

136, so that r =
√

34. From
the center point C to the point B where the brim of the party hat touches the head of
the garden gnome right above the left ear, the distance is also equal to r. Since B is
in a horizontal plane that is 2 cm above the horizontal plane passing through the two
ear holes, the center point P of the circle that constitutes the entire brim of the party
hat, is located 2 cm above the point C. The angle BPC is a right angle, so according to
Pythagoras’ law the radius of this circular brim of the party hat equals

√
r2−4 =

√
30.

The angle TBC is a right angle, because the party hat fits precisely, so it is tangent
to the spherical head at the point B. Therefore, we have that the three triangles TBC,
BPC, and TPB are all of the same shape (congruent), which allows us to calculate the
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distance |TB| as (
√

34
√

30)/2 cm and the distance |TP| as (r2−4)/2 = 15 cm. Finally,
it follows that the distance |TC| equals 2+(r2−4)/2 = 17 cm, so that the top of the
party hat is 17−

√
34 cm above the top of the head of my garden gnome. Converting

this to inches shows that my garden gnome with party hat is (17−
√

34)/2.54 = 4.40
inches taller than 20.60 inches, so the answer is 25.00 inches.

Question(b): To determine the shortest path on the party hat, you should realize that
a party hat is made every day by children in this world, cutting it from a flat piece of
paper and bending it together. If you were to take a pair of scissors to cut it open at
the back, the paper hat would simply flatten and take the shape displayed in the next
figure. The sides TA1 and TA2 indicate the place where you used the scissors; the point

M indicates the center point of the five-pointed star of Maastricht (in the middle!) and
the ant is located above the left ear, precisely at the point B on the brim of the hat. On
this flat piece of paper you need to compute the length of BM. The points A1 = A2, B,
Q, and D, are 4 points that divide the brim of the party hat into 4 equal pieces; Q is right
in front. The total length of the brim follows from its radius before cutting the party
hat open (see question (a)): it equals 2π

√
r2−4 = 2π

√
30. The total length of the full

circle with radius r
2

√
r2−4 from which the flattened paper hat is just a sector, equals

πr
√

r2−4, which is r/2 times larger. So: 2π (the angle of a full circle) is r/2 times
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larger than 4ϕ (the angle of the sector) as the circumferences are proportional to the
angles. This means that the top angle 4ϕ of the sector is 4π/r radians, which gives:
ϕ = π/r = π/

√
34 radians.

To compute |BM| we now consider the triangle TBM and we use the “law of cosines”
(which generalizes Pythagoras’ law from right triangles to arbitrary triangles):

|BM|2 = |TM|2 + |TB|2−2|TM| · |TB|cos(ϕ).

This gives:

|BM|2 = 30 ·34/16+30 ·34/4− (30 ·34/4)cos(π/
√

34) = 99.87,

And therefore |BM|=
√

99.87 = 9.99 cm.

Because the ant first crawled 2.51 cm to get from the left ear hole to the point B, and
because it mirrored its path to get from M to the right ear hole, the total distance it
crawled equals 2 · (9.99+2.51) = 25.00 centimeters.

Without computing their actual values, which is greater, eπ or πe?



6. Web-links on recreational maths

Many of the MMM exercises are inspired on mathematical puzzles found on the internet,
some of them dating back to the mid 19th century when Sam Lloyd started to publish
his conundrums in American newspapers on a regular basis. Other famous problem
inventors are Lewis Carroll, Martin Gardner and the Dutch journalist Léon Vié. When
searching on the internet for interesting problems best thing to do is use the key ‘recre-
ational math problems’. You will be rewarded with lots of hits; below the best ones are
displayed.

• https://mathschallenge.net/links/problems
• https://www.ocf.berkeley.edu/∼ wwu/riddles/intro.shtml. This website provided

the riddles underneath the chapters in this booklet. Solutions may be found over
there as well.
• https://puzzle.dse.nl/index_us.htmlhttps://puzzle.dse.nl/index_us.html
• https://library.ucalgary.ca/c.php?g=255446&p=1703608

And naturally our own website:

• https://project.dke.maastrichtuniversity.nl/mmm/exercises.html

Searching for specific problems? The MMM exercises are categorized; see the table
below.
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E. Year 1 2 3 4 5 Categories
1 1995 P C L P R G Geometry
2 1996 C C A R P C Combinatorics
3 1997 C R L G G A Analysis
4 1998 C A A L L R Reasoning
5 1999 A G R R C L puzzLe
6 2000 G R N A A P Probability
7 2001 L L R P C N Numbers, integer equations
8 2002 A L R G N
9 2003 C P L L G

10 2004 P A A C A
11 2005 G C C G N
12 2006 A R N N R
13 2007 R A C P A
14 2008 A R N L N
15 2009 R R R G N
16 2010 P A A R R
17 2011 G R P R A
18 2012 R N R L N
19 2013 L A A R A
20 2014 A N A R A
21 2015 R R P R N
22 2016 A R A C A
23 2017 P R A A A
24 2018 G A N N R
25 2019 G L C R A

I have two coins. One of the coin is a faulty coin having tail on both sides. The other
coin is a perfect one (heads on one side and tail on the other).
I blindfold myself and pick a coin and put it on the table. The face of the coin towards
the sky is tail. What is the probability that the other side is also tail ?
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